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Abstract 

We report on BioTrack, a real-time 
audiovisual installation expressing 
interest in behavioral complexity 
observed in nature. Specifically, small 
creatures evolve and engage in a 
computer-controlled habitat - sensors, 
activators and software afford 
conditioning and tracking creatures’ 
activity as situated in a small glass 
container. Movement is detected by 
means of a camera and custom 
computer-vision software. Variable 
light patterns are sent into the 
container using a 3D printed structure 
holding 16 LEDs (light emitting 
diodes). A machine learning algorithm 
targets to maximize behavioral 
diversity by optimizing the relationship 
between specific light patterns and 
the complexity of observed 
trajectories in space. Evolving 
trajectories reflect in the way sound 
patterns develop over time. 
Preliminary experiments reveal noisy 
yet non-trivial results 

1. Contextual note 

In a seminal 1974 performance, I Like 
America And America Likes Me, Joseph 
Beuys shares a small room with a live 

coyote for three days. Decidedly relevant 
given the subject of this paper, the artist 
and the animal managed to develop a 
functional relationship of co-habitation 
based on mutual understanding and 
appreciation. The coyote’s behavior 
evolved from aggressive and cautious to 
approachable and sociable. Actual 
evolving behavior is close to the heart of 
this paper as it considers software 
conditioning of small biological creatures. 

Unlike Damien Hirst’s tiger shark 
preserved in formaldehyde, the 
anthropopathic robots created by Chico 
MacMurtrie are prime examples of 
essentially hand-crafted structures 
nevertheless suggesting deeply poetic 
and organic life-like qualities [6]. 

It is often claimed that ‘art imitates life’, 
however, in recent years, the substituting 
components of life itself have become not 
merely subject matter but actual material 
constituents towards the construction of 
artefacts. A wide range of ideas, methods 
and technologies from the biologists 
laboratory have been appropriated by the 
artist also raising questions of social and 
ethic implication [14]. 

Consider, Alba, a fluorescent rabbit, a 
trans-genetic experiment by Eduardo Kac 
(2000), created by genetic engineering 
rabbit DNA, specifically through synthetic 
mutation of the green fluorescent gene 
found in the jellyfish. Alba is a prominent 
example of generative art beyond 
computing – the synthesis of structure 
through explicit instruction without 
resorting to software. Consider, French 
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performance artist Orlan, viewing her 
body as software subject to perpetual 
modification. 

Oron Catts, leading artist in the Tissue, 
Culture and Art Project (TC&A), has been 
designing structures merging living 
biological material and synthetic 
constituents since 1996 suggesting that 
“the body cannot survive without organs 
and cells, but the latter two groups can 
survive without body” [3]. TC&A develops 
biological art collaborations and 
advocates the notion of semi-living 
entities; cells and tissues isolated from 
organisms and coerced to grow in 
predetermined shapes. Such research 
implicitly comments on the human 
condition and raises imperative 
philosophical and ethical questions. 

Interfacing art and biology is by no means 
a recent phenomenon. Early experiments 
in art and technology either took 
inspiration from interesting behavior 
observed in biological workspaces to 
inform the creation of sculptural 
installations exhibiting life-like qualities [5, 
9] or evolving virtual creatures in software 
[10]. Still others choose to fully integrate 
living creatures in their work. 

SEEK is a fine example of an early project 
involving live animals developed by 
Nicholas Negroponte and his team at MIT, 
on display at the NY Jewish Museum in 
1970 [4]. SEEK is designed as a 
sensor/activator system; software senses 
a 3D environment composed of small 
blocks, evaluates changes and 
reorganizes the world accordingly with live 
gerbils moving inside this kind of variable 
architecture. Remarkably, the software 
chooses to either amplify the effect gerbil 
actions or to compensate i.e. reorganize 
the world according to a specific design. 
Note: SEEK implements a closed loop 
system interfacing biological and synthetic 

behavior, effectively suggesting a complex 
hybrid biotope displaying unpredictable 
though coherent behavior.  

A single cell bio-electronic component 
may support hybrid hardware-wetware 
computing: sound can be sent into a Petri 
dish holding slime mould (Physarum 
polycephalum), in turn emitting electrical 
signals to be translated back into sound – 
biological behavior becomes a mapping 
interface in interactive computer music 
performance [8]. 

My project Fishbowl [1] addresses 
collective behavior and fish swimming 
patterns. A reinforcement learning 
algorithm aims to optimize behavioral 
diversity by influencing performance 
through external stimulation operating 
light patterns. Computer-vision tracks 
global flow i.e. intensity and direction of 
the centroid of movement. The basic idea 
is to maximize flow signal diversity, a 
process echoing in the sounds produced 
through sonification. 

DeepLabCut is an open-source tool 
developed at Harvard University, it 
explores deep learning for training neural 
nets to track animal postures and 
behavior. Tracking is deemed attractive 
since motion offers an impression of the 
development of intentionality in the brain 
[7]. 

2. Introduction to BioTrack  

BioTrack is an experimental art-research 
project interfacing biological and synthetic 
communication. Highly speculative, it 
suggests the exploration of spontaneous 
behavior of natural creatures in interaction 
with machine-generated information and 
how internally motivated, innate behavior 
might be influenced by external 
audiovisual stimuli. Specifically, we are 
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interested in the unfolding locomotive 
complexity of biological creatures (such as 
ants) situated in a small, isolated biotope, 
typically a 15 cm Petri dish. 

Spatial behavior of creatures is tracked in 
2D space using computer-vison; 
movement information is extracted as tiny 
‘trajectories’ reflecting short-term history 
dynamics. Trajectory analysis yields 
information on the quantity and quality of 
the physical activity, respectively, how 
much activity is taking place, if any, and 
how complex that activity actually is. In 
other words, levels of amplitude and 
levels of interestingness implied in the 
data is made explicit. 

 

Fig. 1 Schematic overview 

Following the design principle of 
maximization of diversity [13], we aim to 
maximize the complexity of the natural 
activity inside the dish using a 
reinforcement learning algorithm. Since 
optimization is highly inhibited by internal 
and external constraints, ultimately, wave-
like activity will probably develop reflecting 
the process of continuous adaptation. 

We might interpret the trajectories as 
control signals issuing from a hybrid bio-
machine structure and view them as a 
control structure exercising parametric 
control over a sound-generating algorithm. 
Then, the manifestation of a process of 
biological life interfaces actively with a 
process of cultural design. More exactly, 
implicit natural behavior becomes a 
qualitative source of information 

influencing the development of sound 
patterns in an algorithm of explicit design. 
This method clearly avoids the notion of 
‘control’ in favor of ‘influence’ – which is 
an aesthetic choice in the context of 
evaluating different mapping strategies in 
a typical computer music application. 
Mapping exists as a continuous scale 
between two conceptual opposites: (1) 
responsive systems, where control data 
selects responses from a palette of pre-
designed responsive options and (2) 
interactive systems suggesting a more 
symbiotic human-machine relationship 
reflected in unpredictable yet intelligible 
machine responses [2].  

Figure 1 shows circular action in a sensor-
action framework; the camera image is 
analyzed, tracking changes in 
developmental quantity and quality. A 
reinforcement learning algorithm selects 
policies (hardware activation patterns) 
aiming to optimize future behavioral 
diversity in the dish. 

Figure 2 shows the computer-vision GUI 
with current camera image, a single tiny 
creature, its moving contour (red color) 
obtained through background-subtraction, 
a number of sliders for parameter tuning 
and radio buttons to select computer-
vision functions. Visualization also 
includes flow sensor grid activation (light 
blue dots), current centroid of movement 
(white circle) and trajectory (green). 

Hardware 

Two different sized prototypes of 
hardware interfaces were built aiming to 
accommodate distinctive sized action 
spaces. The first interface (figure 3) 
features a 5.5 cm Petri dish, 8 LEDs (light 
emitting diodes) used as activators and 8 
LDRs (light sensitive resistors) used as 
sensors. The LDRs were removed from 
the second much larger design which 
includes a 17 cm glass container, 16 
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LEDs and one piezo element used as a 
global activator while sensing relies 
exclusively on computer-vision software. 
All components interface with an Arduino 
board running the Standard Firmata 
library and custom software. 

 

Fig 2: Main interface of BioTrack 
application 

3. Implementation 

3.1 Analysis functions 

BioTrack is organized as an object-
oriented system written in Processing [12] 
with extensive use of external libraries, 
including functionality for Supercollider, 
Arduino, OpenCV and OSC (Open Sound 
Control).  

Software serving behavioral analysis is 
based on OpenCV. Every single module 
addresses a particular aspect of image 
complexity while the user may select an 
arbitrary collection of modules to run in 
parallel as to compute an overall image 
analysis result in real-time. However, in 
practice, some algorithms are 
computationally expensive affecting global 
performance. In particular, two computer-
vision algorithms are helpful in developing 

a high-level interpretation of creature(s) 
activity as reflected in consecutive image 
frames: flow detection and background-
subtraction. 

A flow algorithm computes both the local 
and the global flow i.e. the strength and 
the direction of change in the image – the 
data is reflected in the size and angle of a 
vector. In addition, a grid of virtual flow 
sensors overlays the actual camera 
image, a clear impression results of 
specific location and strength of physical 
activity in the dish. Every process cycle 
yields a list of flow data; heading and 
intensity of change – the global quantity 
and quality levels are computed from the 
data: quality depicts the diversity of angles 
(the length of the list vs. the number of 
unique angles) while quantity is computed 
by averaging the length of all flow vectors 
in the list. However, when dealing with tiny 
creatures (such as ants or small spiders), 
we observed that flow data is too weak, 
for that reason we turn to background-
subtraction.  

 

Fig 3: Early prototype with Arduino board 

A background-subtraction algorithm 
continuously compares consecutive image 
frames generating a collection of contours 
suggesting both an impression of the 
volume and diversity/complexity of 
change. Background-subtraction tracks 
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the amount of change (total number of 
contour points and total contour surface) 
and the centroid of change (the averaged 
global center origin of all contours). 

Background-subtraction aims to extract 
trajectories of change from the analysis of 
consecutive frames; a trajectory is an 
abstraction for a ‘path’ in 2D space – we 
are interested in the complexity of the 
path and how it changes over time as a 
consequence of external stimulation e.g. 
light patterns and sound. At 12 
frames/second, up to 5 trajectories are 
accommodated taking care of 5 groups of 
contours – a single trajectory is a 20-
elements long FIFO (first in/first out) data 
structure accepting the respective centroid 
of every group. 

Given a trajectory of points in 2D space, 
we may compute both the angles and 
distances between any two points. 
Considering the continuity (deliberating 
change in consecutive data items) and 
diversity (studying all data; the ratio of the 
number of data items vs. the number of 
unique items) we get an impression of the 
global complexity and eventually, how it 
progresses inside the history of a single 
trajectory.  

Then, two critical values result: quality and 
quantity, respectively. Their evolving 
values will impact the learning procedure. 

3.2 Learning 

Optimization is the goal of learning. Our 
wish to maximize behavioral complexity 
requires a method to select appropriate, 
promising stimuli (LED light patterns, and 
particular sonic activation) to be sent into 
the dish. However, we have no clue for 
how effective any given external activation 
might be; therefore, we suggest an 
optimization method based on 
reinforcement learning (RL) [11], more 
specific, a variation of the Q-learning (QL) 

algorithm [15] was implemented. RL aims 
to select the best actions – in any possible 
system state – in order to maximize the 
reward. Therefore, RL is considered a 
method of experience-based 
unsupervised learning. Q-learning 
coordinates action selection: locally, 
select the optimal action given a state and 
globally, learn a policy that maximizes the 
total reward. QL typically tabulates state-
action pairs and q-values (equivalent to 
efficiency), in the context of the present 
project; estimated proficiency to maximize 
diversity.   

Initially, a collection of random policies is 
computed and applied within a finite 
process cycle (typically 10 seconds) and 
evaluated – the efficiency/reward being 
proportional to the strength of the interval 
in behavioral complexity between 
beginning to end. At the start of the RL 
process, we are in the exploration phase; 
random selection and evaluation of 
policies. After a while, we gain some 
understanding of potentially effective 
policies and enter the exploitation phase; 
moving on from exploration and discovery 
to selection of the action featuring the 
highest q-value.  

Implementation of learning 

Computing the present quantity 
and quality (QQ) values follows a 
self-regulating sensitivity windowing 
algorithm; the minimum and maximum 
sample window edges move up and down 
trying to (1) accommodate outliers through 
expansion as well as maximizing 
sensitivity through gradual compression. 

The concept of a system State is crucial; 
QQ values (0 ~1.0) are mapped to 0 ~ 3, 
consequently combining the data yields a 
State between 0 and 15.  

Learning manages the list saPairs: a 
collection of State-Action pairs (SAP), a 
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single SAP holds a vector specifying the 
fitness of every potential action given one 
particular state. At any time, the number 
of possible actions equals 16. Learning 
proceeds as follows: 

- The new State is computed form 
the present QQ values. 

newState = 
computeStateAdaptive(quality, 
quantity); 

- The reward/punishment is 
computed from the signed 
interval: current quality minus the 
previous quality. 

reward = (currentQuality – 
previousQuality).  

- Get the efficiency (q-value) after 
using the last action in the 
previous state. Therefore, check 
for an existing SAP holding that 
State. If it exists, return the q-
value of that action, if not return 0; 
i.e. that State has never occurred 
before. 

thisQ = getQValue(previousState, 
lastAction); 

- Look for an existing SAP featuring 
the new state. 

StateActionPair p = 
getSAP(newState); 

- If p equals null (signaling a newly 
observed state), a new SAP is 
created and appended to the 
saPairs list: 
 
StateActionPair sap = new 
StateActionPair(newState); 
newQ = (float) thisQ + 
learningRate * ( reward - thisQ ); 
sap.qValues[lastAction] = newQ; 
 

- If p is not null (signaling the SAP 
already exists), collect the highest 
value in the q-values vector and 
compute the new q-value and 
update the q-value for the 
lastAction in the given SAP. 
 
maxQ = p.getMaxQValue(); 

newQ = (float) thisQ + 
learningRate * ( reward + maxQ - 
thisQ ); 

updateQValue(oldState, 
lastAction, newQ); 

- We are now ready to select a next 
action given the new state and 
update the previous quality. 
 
newAction = 
selectAction_E_GREEDY(newSta
te);   
prevQuality = quality;  
 

- The selectAction_E_GREEDY 
function is conditioned by the 
epsilon (0 ~1.0) parameter, it 
specifies a probabilistic ratio 
between exploration and 
exploitation activity in learning. 
Exploration selects a random 
action without relying on learned 
information. Exploitation entails a 
selective procedure aiming to 
select to most promising action 
based on the evaluation of 
previous learning cycles. 
However, we first check the 
qValues for the current state; 

qValues = getQValues(state);  

if (random(1.0) < epsilon || 
qValues == null) { 

 action = 
int(random(nrActions)); // 
exploration 
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} else { 

 // exploitation 

 find maxQ in qValues 

 create list of all actions 
contributing to maxQ 

 randomly select and 
return action from the list   

} 

Learning is a gradual process of 
optimization requiring sufficient cycles 
before the influence of external 
conditioning becomes effective. In 
particular, when interlocking living 
creatures in a computational process, 
estimation of the required learning time 
seems impossible. More systematic 
experiments are definitely needed. Some 
preliminary experiments are documented 
next. 

4. Experiments 

Short experiments run for 45 cycles, 40 
samples per cycle and sampling interval 
of 200 msec. 

Box plots in figure 4 suggest, given low 
quality values, a strong correlation to exist 
between quantity samples, with higher 
quantity values, the agreement fades. 
Globally, the quantity median values show 
a bell-like distribution – both very low and 
very high-quality levels correspond to low-
quantity. These findings are contradicted 
in experiment 2 as quantity values are 
widely distributed, presented in figure 5. 

Graphs for both experiments as shown in 
figures 6 and 7, clearly reveal a gradual 
decline in action-frequency – explained by 
the gradual progression from exclusive 
exploration selection to maximum 
exploitation selection in the learning 
algorithm. In experiment 1 (figure 6), 

action frequencies exist as two groups of 
low and high values. In figure 7, 
oscillations between action-frequency 
value 5 and lower values seem to agree 
with the chaotic pattern of QQ correlation 
in figure 5. 

 

 
Fig. 4 Experiment 1                         

Fig. 5 Experiment 2 
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Fig. 6 Experiment 1                          

Fig. 7 Experiment 2 

5. Conclusion 

This paper documents preliminary results 
of BioTrack, an audiovisual experiment 
exploring behavior of living creatures and 
how their spatiotemporal activity could be 
optimized using a reinforcement learning 
algorithm.  

Obviously, experiments of much longer 
duration are indispensable to fully 
understand the scope of this speculative 
project. Perhaps it requires stronger 
physical conditioning to reduce noisy 
behavior to a minimum. By definition, the 
behavioral complexity of living creatures 
seems impossible to estimate – there are 
wide gaps of inactivity in the acquired 
data. The relationship between activation 
patterns and ensuing locomotion seems 
unclear. Many unknown biological 
processes seem to contribute to 
unfounded noisy behavior. Long term 
experiments might reduce noise levels 
and reveal delicate, intricate action 
patterns.  
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