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Abstract: 
Complexity theory offers a new way of understanding spatial patterns 
as self-organising morphologies. This provides a promising paradigm 
for exploring spatial organizations as the emergent outcome of 
dynamic relations between simple elements bounded together by 
multiple feedback loops. Self-organising spatial morphologies can be 
defined as a part of a process, usually a simple one, and modelled 
employing iterative algorithms.  
 
This paper reports on how various versions of the canonical flocking 
[1] algorithm can be utilized to interactively evolve emergent spatial 
patterns. The reason for selecting flocks as a study area is the 
fascinating asymmetry between the simplicity of the rules and the 
spatial complexity of the outcomes, when observed from a synoptic 
viewpoint. The flocks are modelled as Agent Based Systems using 
Netlogo [2] language. Together with traditional behaviours (separate, 
align, and cohere) the models employ up to five additional rules and a 
variety of parameters. The focus of the models range from obstacle 
avoidance, to learning and evolutionary flocking. The aim of the 
research is to investigate how complex architectural possibilities can 
be generated bottom-up, using distributed representation.  
 
Theoretically the research is related to the work of Paul Coates [3], 
Sebastian von Mammen, Aaron Westre, James Macgill, and many 
others. 
 
 
 
 
 

 
Image. Some initial outputs of flocking models. 
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Premise

Abstract:
Complexity  theory  offers  a  new  way  of  understanding  spatial  patterns  as  self-
organising morphologies. This provides a promising paradigm for exploring spatial 
organizations  as  the  emergent  outcome  of  dynamic  relations  between  simple 
elements  bounded  together  by  multiple  feedback  loops.  Self-organising  spatial  
morphologies can be defined as a part  of  a  process,  usually a  simple one,  and 
modelled employing iterative algorithms. 

This paper reports on how various versions of the canonical flocking algorithm can 
be utilized to interactively evolve emergent spatial patterns. The reason for selecting 
flocks as a study area is the fascinating asymmetry between the simplicity of the  
rules and the spatial complexity of the outcomes, when observed from a synoptic 
viewpoint.  The  flocks  are  modelled as  Agent  Based  Systems  using  Netlogo 
language.  Together  with  traditional  behaviours (separate,  align,  and  cohere)  the 
models employ up to five additional rules and a variety of parameters. The focus of  
the models ranges from obstacle avoidance, to learning and evolutionary flocking. 
The aim of the research is to investigate how complex architectural possibilities can 
be generated bottom-up, using distributed representation. 
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1. Introduction

Complexity Theory offers a new epistemology, i.e. a new way of understanding and 
knowing patterns  and  structures  that  we  observe  in  the  world,  as  the  emergent 
properties of  iterative parallel  actions  of  very simple autonomous processes.  The 
complex outcome emerges entirely bottom-up from the multiple interactions between 
these events. 

Artificial  Life  (AL)  [1],  on the other  hand,  is a computational  approach based on  
distributed representation that attempts to model the above principles and to employ 
them in a wide variety of  applications.  It  gives us computational  frameworks like 
Genetic Algorithms, Cellular Automata, and Agent Based Systems. 

The theory of Autopoesis pioneered by Maturana [2] occupies a central place in AL.  
He introduced the concept of structural coupling and based his philosophy on the  
notion of cognition, which he saw as a natural effect of being embodied in the world.  
Structural  coupling  describes  dynamic  mutual  co-adaptation  without  allusion  to  a 
transfer  of  some  ephemeral  force  or  information  across  the  boundaries  of  the 
engaged systems [1]. There are two types of structural coupling - system coupling 
with its own environment and system coupling with another system. These systems 
allow scientists and designers to explore space, cognition and intelligence by building 
simple feedback systems between agents and their environments.

This paper reports on initial results of research which set out to explore the potentials 
of  flocking  algorithms  for  generating  architectural  possibilities.  The  flocks  are 
modelled as Agent Based Systems using Netlogo [3] computer language, outlined in 
section 2, and some of the results are exported and rendered in Rhino. The focus is 
on variations and alternatives of the canonical flocking algorithm, as proposed by 
Reynolds [4],  which are grouped in the following categories: interactions between 
agents and interactions between agents and their environment, explained in sections 
3 and 4. The paper concludes with a discussion of the advantages, drawbacks and 
limitations of the models with respect to their applications in architecture. 

2. Agent Based Modelling and Netlogo 

Agent  Based  Modelling  (ABM)  has  its  origins  in  Object-Oriented  Programming, 
Artificial Life, and is paradigmatically supported by contemporary Complexity Theory.  
Agent Based Models consist  of  agents,  autonomous little computers that  operate 
within environments to which they are uniquely adapted. Agents interact with each 
other  and  with  their  environments  according  to  their  strategies  in  a  parallel  and 
repetitive manner. The agents’ strategies are driven by transition, typically entirely 
local rules. Any number of rules can be devised to govern the activities of agents, 
such as the goals that agents seek to satisfy, or the ‘preferences’ that agents might  
have.  Agents  also  have  a  set  of  attributes,  or  states,  that  describe  their 
characteristics. True mobility and dynamism are inherent qualities in these types of 
models.  It  is important  to  note  that  in order to  have a bottom-up,  self-organising 
outcome the transitional rules need to be local and not overly specified. 

ABM  offers  the  possibility  to  study  configurations  of  space  as  self-organising 
phenomena. As Coates [1]states: 
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This approach seems to provide a nice paradigm for architecture as the emergent 
outcome of  a whole lot  of  interconnected feedback loops,  which replace the top-
down geometry and the reductionist tradition with dynamic relations and emergent  
outcomes not defined in the underlying model.

Netlogo  is  an  agent  based  programming  language  and  modelling  environment 
developed  as  a  parallel  computation  machine  which  provides  a  powerful  
experimental tool for exploring and demonstrating the effects of massively parallel  
populations of interacting agents in biology, physics, geometry, social systems and 
ecologies.  It is particularly well suited to modelling complex systems evolving over 
time.  Modellers can  give  instructions  to  hundreds  or  thousands  of  independent 
‘agents’ all operating concurrently.  Agents are autonomous beings that can follow 
instructions.  All  of  the  agents  can  carry out  their  own activity  simultaneously.  In 
Netlogo, there are four types of  agents:  turtles,  patches,  links, and the observer. 
Turtles are agents that move around in the world. The world can be two dimensional 
or three dimensional and consists of  grids of patches. Each patch is a square or 
cubic piece of  space over which turtles can navigate.  Patches cannot  move,  but  
otherwise they're just as "alive" as turtles and the observer are. Links are agents that  
connect two turtles. The observer does not have a location, it is looking over the 
world of turtles and patches. 

3. Flocking 1 (interactions between agents)

This section presents variations and alternatives based on the Reynolds’  flocking 
algorithm. The rules governing the flock model,  introduced by him are explained; 
then the modified  behavioural rules of the swarm agents are illustrated. They add 
richness and variability to the performance of the flocks and yield visually interesting 
and dramatic results. 

3.1 The Reynolds’ flocking algorithm

The flocking model was originally proposed by Reynolds [4] in 1987 as an algorithm 
for  computer  simulation  of  the  flocking  behaviour  of  birds,  both  for  animation  
purposes and as a way of studying emergent behaviour and, since then, has been 
employed in a wide variety of  applications. Researchers from diverse fields have 
employed  and  interpreted  flocking  behaviours in  their  attempts  to  study  an 
impressive  variety  of  phenomena.  Flocks  have  been  made  to  represent  virtually 
every system of flow - from pedestrian, crowd dynamics and traffic to movement of 
animals and distribution of plant species in ecosystems [5]. Flocking algorithms have 
been used as search and optimization mechanisms in metric [6] and n-dimensional  
phase-spaces  [7].  Architectural  interpretations  of  flocking  algorithms  have  been 
studied by Paul Coates [7], Aaron Lane Westre [8], and Olga Linardou [9] to name  
just a few.

Flocking is an example of emergent collective intelligence based on local and simple 
stimulus-reaction rules. There is no leader, i.e. no global control. The overall pattern  
emerges from the local interactions. Each agent has direct access to the geometric 
description of the whole world, but reacts only to flock mates within a certain field of  
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view. The basic flocking model consists of three kinds of simple steering behaviours:

Separation  gives  an  agent  the  ability  to  maintain  a  certain  distance  from others 
nearby. This prevents agents from crowding too closely together, allowing them to 
scan a wider area.

Cohesion supplies an agent with the ability to cohere (approach and form a group) 
with  other  nearby agents.  Steering  for  cohesion  can  be  computed  by finding  all  
agents in the local neighborhood and computing the average position of the nearby 
agents. The steering force is then applied in the direction of that average position.

Alignment gives an agent the ability to align with other nearby characters. Steering 
for alignment can be computed by finding all agents in the local neighborhood and 
averaging together the ’heading’ vectors of the nearby agents.

All the agents or turtles implement the navigation rules simultaneously and iteratively 
in the following order [10]: 

to flock 
  find-flockmates ; each agent finds other agents that are within its cone of vision
  if any? flockmates
    [ find-nearest-neighbor; each agent finds the closest agent among its flock mates
      ifelse distance nearest-neighbor < minimum-separation ; when two birds are too  
close, the "separation" rule overrides the other two, which are deactivated until the  
minimum separation is achieved. 
        [ separate ]
        [ align
          cohere ] ]
end (Figure 1)

Figure 1 Steering trajectories with constant speed

In  this version of  the  model  the  rules affect  only the  birds’  headings and all  the  
agents  move  at  a  constant  speed.  The  steering  behaviours are  also  entirely 
deterministic, i.e. apart from the initial positions of the agents there are no random 
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numbers in the algorithm. Provided the deterministic nature of the rules the flock 
formation is still dynamic, once a flock is together there is no guarantee that it will 
keep all of its members. There are seven parameters that can be adjusted by the 
user  in  this  model:  population,  vision-distance,  vision-angle,  minimum-separation,  
max-separate-turn,  max-align-turn,  and  max-cohere-turn.  By  adjusting  the  sliders 
numerous  behaviours can be achieved - tighter flocks, looser flocks, fewer flocks, 
more flocks, more or less splitting and joining of flocks, more or less rearranging of  
birds within flocks, etc.

In order to achieve even more diverse collective behaviours the following rules were 
added:

Acceleration: Agents that are not part of a flock can fly faster to catch up, while birds 
that have flock mates adjust their velocity to the average velocity of their flock mates 
and, as a result, the whole flock slows down.

Chase, Avoid and Eat rules: These rules were developed in order to further diversify 
the simulation. There are two types of birds: predator and prey. The predators can  
diverge from their flock and chase the closest prey. Prey agents on the other hand 
try to avoid any predators in their field of view. (Figure 2)

Obstacle  avoidance  rule:  This  is  very similar  to  the  separation  rule.  The  agents 
detect  the  closest  obstacle  in  their  ‘cone  of  vision’  and  determine  the  distance 
between themselves and the obstacle.  They then turn left or right in such a way that,  
as they get nearer to the obstacle,  they veer away from it,  retaining their smooth 
movements. (Figure 3)

Figure 2 Steering trajectories generated from separate align, cohere rules combined  
with acceleration, chase and avoid rules
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Figure 3 Steering trajectories generated from separate align, cohere rules combined  
with obstacle avoidance rule

3.2 V-shaped flocks

An intriguing alternative to Reynolds’ flocking algorithm was introduced by Nathan 
and Barbosa [11] in their study of the emergence of V-like formations during flight of 
migratory birds. Apart from having an unobstructed view in the direction of their flight, 
for relatively large birds the aerodynamics of flight seems to be the main reason for 
the formation of V-shaped flocks.  The essence of  the aerodynamics is that  each 
flying individual creates an upwash region behind it, just off the tips of its wings, such 
that  another  individual  benefits  greatly (in  terms of  requiring less exertion  during 
flight) if it places one of its wings in that region. The rules again are entirely local and  
are executed in parallel manner. They are the following [12]:

If a bird cannot see any other birds in its cone of vision, it will continue to fly straight  
at its normal base speed. Otherwise, each bird follows four rules, given in this order 
of priority. 

1 If a bird is further than the distance for getting an updraft benefit from the nearest  
visible bird, it will turn toward that bird and speed up to get near it. 
2 Once a bird is near enough to another bird it will move randomly to one side or  
another until its view is no longer obstructed. 
3 If a bird gets too close to another bird it will slow down. 
4 Once the three conditions above are met the bird will set both its speed and its  
heading to that of its closest visible neighbour. (Figure 4)

The behaviour rules from both models can be interwoven in a limitless variety of  
ways. Agents can also die, reproduce and change their headings randomly. All the 
rules were made probabilistic, i.e. the user can adjust the probability, expressed as a 
percentage, that the agent will follow certain rules. Birds also keep a record of their  
trajectories and the previous values of their variables

By altering  rules  and adjusting  probabilities,  a  wide  range of  behaviours can  be 
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studied.  Because  of  the  stochastic  nature  of the  rules,  and  the  non  linear 
relationships  between  the  rules  and  the  resultant  behaviours, new  and  entirely 
artificial configurations are continuously invented through the set up of simulations. 

Figure 4 V-shaped flocks. The red colour indicates unhappy boids, i.e. they either do  
not benefit from the upwash or have an obstructed view 

Agents, and their trajectories through space, are simply collections of points and the 
values of agent’s variables in the models. These collections form three dimensional  
point clouds with lists of data, representing agent variables attached to them. These 
initial datasets can be seen as frameworks over which a wide variety of geometries  
can be mapped. For each flock, shapes can be specified for both the location of the 
agents and for the paths those agents trace through space. These shapes can be 
transformed  utilizing  the  agent’s  variables  like  heading  vector,  velocity,  and 
acceleration, number of flock mates, etc. Loft surfaces can be wrapped using birds’  
trajectories. (Figure 5) 

Regardless of the geometric interpretations of the flocks the main question is what 
model  setting  can  produce well-formed spatial  configurations  that  can be further 
developed into architectural designs? It is important to note that even the most basic 
simulation  –  deterministically  applying  just  the  three  fundamental  flocking  rules 
(separate, align, cohere), with the same amount of birds and same initial positions,  
the  total  size  of  the  parameter  space  (all  possible  combinations  of  parameter 
settings) is incredibly large - 41x360x21x81x81x81 = 164 725 452 360. This issue 
requires  further  research and  is  partially  addressed  in  the  ‘Evolutionary  Flocks’ 
chapter.
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Figure 5 Views of three geometric interpretations of the same model’s output
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4. Learning (Exploratory) Flock

In 'The use of Flocks to drive a Geographic Analysis Machine',  J. Macgill  and S. 
Openshaw  [6]  study how the  emergent  flocking  behaviour  might  be  used  as  an 
effective  search  strategy  for  performing  exploratory  geographical  analysis.  Their 
method relies on the parallel search mechanism of a flock, by which if a member of a 
flock  discovers  an  interesting  area,  the  mechanics  of  the  flock  will  attract  other 
members to explore that area in detail.

This technique utilises variable velocities of the agents, with common minimum and 
maximum for all agents and variable colours for the agents. Both velocity and colour 
have ‘meaning’ in regards to the success of an agent in finding an interesting area.  
The learning flock is governed by the following rule sets:

Every agent assesses its current location and the number of other agents in its cone 
of vision. After that it changes its colour as described below:

If there are no other agents the agent in question dies. 
If there are other agents but nothing interesting in the environment then the agent  
turns blue. 
If there are other agents and some interest in the environment then the agent turns  
green.
If there are other agents and more interest in the environment then the agent turns  
red. 
If there are other agents and a significant interest in the environment then the agent 
turns yellow and stops.

Then each agent adjusts its heading according to the following list of instructions:

If the closest neighbour is too close then separate from it regardless of its colour. 
If the closest neighbour is green, disregard it. 
If the neighbour is red or yellow, feel attracted. 
If neighbour is blue, then avoid it. 

Every agent takes the weighted average of all  target points generated above and 
moves towards that point with the following velocity rules: 

If I'm blue move faster (This area is not interesting).
If I'm red move slower (There is some interest and I don't want to miss anything). 
If I'm yellow, don't move. 

This means that when agents find something interesting in the environment they will 
slow down and cluster in order to  explore the area in more detail.  This  happens 
because their speed is low and they have the inertia to remain there. The agents in 
the neighbourhood that have not detected anything of interest will speed up and be 
attracted to heavier and slower agents. The idea is that the information is stored in 
the velocities of the agents. Speeding up corresponds to ‘forgetting’ in the system. 
With this algorithm, the flocks will move around discovering areas of interest. If the 
area does not  have enough weight  compared with  another,  it  will  not  be able to  
attract enough agents.  After iterating the algorithm numerous times,  the flock will  
‘forget’ the areas of low interest. The main issue is, once again, the nonlinear relation 
between the parameter settings of the model and the discoveries made by the birds.
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5. Evolutionary Flocks and Behaviour Search

The models discussed in previous chapters collectively proved that the rules and the 
outcomes are independent to a certain degree, and we can claim that these kinds of 
models are epistemologically autonomous, i.e. the resultant patterns are not in the 
algorithm. To compare the rules and the parameters to ‘a genotype’ and the various 
outcomes of the model to ‘a phenotype’ is a natural extension to this type of logic.  
Von Mammen [13] coined the term swarm grammars in order to describe particular 
settings of a flocking model, i.e. number of individuals, behavior rules, parameters, 
etc. He also translated the swarm grammars and the outcomes into biological terms. 
Swarm grammar configurations represent genotypes and their simulations compute 
the corresponding architectures, the phenotypes. As indicated earlier the number of  
possible  flock  grammars  is  incredibly  vast  –  the  most  basic  model  illustrated  in 
section 4 has nearly eleven million possible grammars. The stochastic nature of the 
models ensures that running the simulation with the same grammar, or phenotype, 
will  produce a virtually infinite  number of  phenotypes or architectural  possibilities. 
The configuration of the grammar does not reveal the emergent spatial configuration; 
the algorithmic game has to be played first.

The  combination  of  these  factors  makes  a  full,  brute-force  exploration  of  the 
parameter space infeasible [14]. Designers can respond to this difficulty in variety of 
ways. Exploring sub-spaces, or the whole space, at low resolution is one of them 
[14].Varying a single parameter at a time, while keeping the rest constant, is another  
approach.  The  models  described  represent  complex  systems  with  non-linear 
interactions;  these methods can neglect grammars,  or genotypes,  that  will  output  
interesting, or unexpected, behaviours from the model.

The question that arises is how to configure grammars that are likely to generate  
innovative  and  well  formed  spatial  outcomes  from  architectural  viewpoint?  Von 
Mammen  [15]  provides  the  link:  using  the  concept  of  evolution  and  genetic  
algorithms. 

BehaviorSearch [16] is an open-source software tool that interfaces with Netlogo and 
provides several search algorithms that can be used to explore Agent Based Models 
written in Netlogo. The heuristic techniques to search the parameter-space include 
uniform random search (RS), a random-mutation hill  climber (HC), and a genetic  
algorithm (GA). 

Exploration of a model comprises four steps: definition of the parameter space of the 
model (varying parameters and allowed parameter ranges), design of a quantitative 
measure  for  the  behaviour  of  interest  (fitness  function),  selection  of  search 
techniques that optimize the fitness function, running the search and examination of 
the results.

Experimenting with BehaviorSearch will be the next step of the research. The biggest 
challenge will be the design of the fitness function. In order for flocking algorithms to  
generate  well-formed configurations of  space from an architectural  viewpoint,  the 
fitness function needs to encompass a wide range of criteria, some of them of a 
qualitative nature, while others involve complex quantitative relationships.
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5. Conclusion

This paper reported on variations and alternatives to Reynolds’  flocking algorithm 
and their abilities to generate architectural possibilities. The flocks were modelled as 
Agent Based Systems and theoretically positioned within an Artificial Life paradigm. 
The models were examined as examples of  emergent  collective intelligence.  The 
outputs  of  the  models  reveal  intriguing  and  unexpected  spatial  patterns.  These 
patterns  are  emergent  phenomena  overall  based  on  local  and  simple  stimulus-
reaction  rules.  The  models  studied  included  the  canonical  flocking  algorithm,  
obstacle avoidance, predator-prey, v-shaped flocks, learning and evolutionary flocks. 

The major challenge to architects and designers that want to experiment with flocks 
in  particular  or  with  ABM  in  general,  is  the  non-linear  genotype-phenotype  like 
connection  between  a  model’s  rules  and  parameters  and  the  emergent  spatial 
outputs. Searches through the vast parameter-spaces in these models can be a very 
difficult  and challenging task.  Research in  these  areas is  still  in  its  infancy.  The 
proposed tool – BehaviorSearch – was released in 2010 and is still a beta-version.  
As has been explained, to design a quantitative measure for the behaviour of interest 
(fitness function) for an architectural project is another big challenge. 

Despite the challenges and difficulties, ABM definitely has a future in architecture. 
ABM  is  one  of  the  few  computational  frameworks  that  can  be  used  to  study 
complexities of the structures that we observe in the world.
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