
Generative Art 2002

pCM (pure C Music): a real-time music language

Leonello Tarabella

computerART Project, Istituto A.Faedo ISTI/C.N.R, Area della Ricerca di Pisa
e-mail: l.tarabella@cnuce.cnr.it

http://www.cnuce.pi.cnr.it/tarabella/cART.html

Abstract

In order to put to work the facilities offered by the gesture interfaces realised at cART project
of CNR, Pisa, I started writing basic libraries for processing sound and for driving the gesture
interfaces. In the long run the framework became a very efficient, stable and powerful “music
language” based on pure C programming, that is “pure-C-Music”, or pCM. This programming
environment gives the possibility to write a piece of music in terms of synthesis algorithms,
score and management of data streaming from gesture interfaces. The pCM framework falls
into the category of the “embedded music languages” and has been implemented using one of
the most popular C compilers or better, multiplatform development systems: Metrowerks’
Code Warrior. As a result a pCM composition consists of a CW project which includes all the
necessary libraries, including a DSP.lib consisting of a number of functions able to implement
in real-time the typical synthesis and processing elements such as oscillators, envelope
shapers, filters, delays, reverbs, etc. The composition itself is a C program consisting, mainly,
of the Orchestra() and Score() functions. Everything here is compiled into machine code and
runs at CPU speed.

1. Introduction

The activity of cART (computerArt Project of C.N.R., Pisa) is characterised by the design
and the realisation of systems and devices for gesture control of real-time computer generated
music in order to give expression to interactive electro-acoustic performances[1], as it
happens in traditional music. The “wireless technology” (or “touchless technology”)
paradigm has been taken into consideration [2]. Main targets of the research consist of the
implementation of models and systems for detecting gestures of the human body that becomes
the natural interface able to give feeling and expressiveness to computer based multimedia
performances. The term “multi-modality” [3] is often related to these typologies of interfaces
just for emphasising that combining different modes of perception, becomes relevant for the
performer and for the audience that, at the end, is the final “user” of the performance.

At cART, attention has been focused in designing and developing new original general
purpose man-machine interfaces taking into consideration the wireless technologies of
infrared beams and of real-time analysis of video captured images [4]. Specific targets of the
research consist of studying models for mapping gesture to sound; in fact, in electro-acoustic
music nothing is pre-established as in traditional music and instruments where there exist
precise and well consolidated timbric, syntactic (harmony) and fingering systems of
reference. The basic idea consists of remote sensing gesture of the human body considered as
a natural and powerful expressive “interface” able to get as many as possible information
from the movements of naked hands. A brief description of systems and devices we
developed, follows. Video clips of performances realised with our gesture interfaces can be

 27. 1

Generative Art 2002

found at the reported web page.

1.1 Twin Towers

This device consists of two sets of sensing elements that create two zones of the space, i.e. the
vertical edges of two square-based parallelepiped, or virtual towers. At the time the first
prototype was realised (1995), the shape of the beams suggest us the profile of the late Twin
Towers in New York (we chose to keep the name in tribute to the victims of the tragedy).
The measurements of distance of the different zones of the hands are performed by the
amount of reflected light captured by the receivers (Rx’s) and are quite accurate in respect to
the irregularity, in shape and colour, of the hands palms. Voltage analog values coming from
the Rx’s are converted into digital format and sent the computer about 30 times/sec. The
computer then processes data in order to reconstruct the original gesture [5,6]. It’s so possible
to detect positions and movement of the hands such as height and side and/or front rotations.

1.2 Imaginary piano

In the Imaginary Piano a pianist sits as usual on a piano chair and has in front nothing but a
CCD camera few meters away pointed on his hands. There exists an imaginary line at the
height where usually the keyboard lays: when a finger, or a hand, crosses that line downward,
proper information regarding the “key number” and a specific messages issued in accordance
 of "where" and "how fast" the line has been crossed are reported. Messages are used for
controlling algorithmic compositions rather than for playing scored music.

1.3 PAGe system

Another application based on the video captured image analysis system is PAGe, Painting by
Aerial Gesture, which allows video graphics real-time performances. PAGe has been inspired
and proposed by visual artist Marco Cardini (www.marcocardini.com) who suggested the idea
of a system able to give the possibility of "..painting in the air.." and to introduce a new
dimension to painting: time. PAGe has been designed by L.Tarabella and developed by
Davide Filidei. PAGe allows Cardini, who also performs on stage, to paint images projected
onto a large video screen by moving his hands in the air [7].

1.4 Mapping

The different kinds of gestures such as continuos or sharp movements, threshold trespassing,
rotations and shifting, are used for generating sound event and/or for modifying sound/music
parameters. For classic acoustic instruments the relationship between gesture and sound is the
result of the physics and mechanical arrangement of the instrument itself. And there exist one
and only one relationship. Using a computer based music equipment it’s not so clear “what”
and “where” is the instrument. From gesture interfaces, such as the infrared beam controller
or image processing based systems, to loudspeakers which actually produce sound, there exist
a quite long chain of elements working under control of the computer which performs many
tasks simultaneously: management of data streaming from the gesture interfaces [8],
generation and processing of sound, linkage between data and synthesis algorithms,
distribution of sound on different audio channels, etc. This means that a music composition
must be written in term of a programming language able to describe all the components
including the modalities for associate gesture to sound, also said how to “map” gesture to

 27. 2

http://www.marcocardini.com/

Generative Art 2002

sound. The “mapping” makes therefore part of the composition [9].

2. A new real-time music language

In order to put at work the mapping paradigm and the facilities offered by the gesture
interfaces we realised, at first we took into consideration the most popular music languages:
MAX/DSP and Csound. Unfortunately, both languages resulted not precisely suited for our
purposes mainly because Csound was not so real-time as declared and Max was not so
flexible for including video captured images analysis code. Using two computers (first one for
managing interfaces, second one for audio synthesis) connected via MIDI, resulted awkward
and inefficient. We started writing basic libraries for processing sound and for driving the
gesture interfaces bearing in mind the goal of a programming framework where to write a
piece of music in terms of synthesis algorithms, score and management of data streaming
from gesture interfaces. On the long run the framework became a very efficient, stable and
powerful “music language” based on pure C programming, that is “pure-C-Music”, or pCM.
“pCM” falls in the category of the “embedded language” and needs a C compiler in order to
be operative; at first this may appear an odd news, but consider the good news of getting a
compiled code of a synthesis algorithm which generate and process sound running many
times faster in respect to Csound which, on the other hand, is an interpreted language.

2.1 pCM, pure C Music

pCM has been implemented using one of the most popular C compiler or better,
multiplatform development system: Metrowerks Code Warrior. As a result a pCM
composition consists of a CW project which includes all the necessary libraries including,
once again, a DSP.lib (Digital Signal Processing library) consisting of a number of functions
(at the moment more than 50) able to implement in real-time the typical synthesis and
processing elements such as oscillators, envelope shapers, filters, delays, reverbs, etc.. The
composition itself is a C program consisting of four void functions: Init(), Orchestra(),
Score() and End() properly invoked by the main program which controls the whole
“machinery”.

Composition Main mechanism

audio

…..
Oscil(n,freq);
…...
Envelop(n);
…..
Lowpass(n,freq);
…..
Reverb(n);
……..
Delay(n,len);
………
……….

…..
Init();
do
{
 ….
 Orchestra();
 …
 Score();
}
while (cond)
End();
…...

video

MIDI

 27. 3
//Global variables
float val, freq,g…;
long k,j,…;
…..
Init()
{
 ……
}
Orchestra()
{
 val=Oscil(1,freq);
}
Score();
{
 freq=..f(midiIn)..
}
End()
{
}

DSP.lib

Generative Art 2002

Fig.1 pCM principle of operations

For practical reasons of consistency it’s a good idea the four functions make part of the same
file which also includes declaration of the variables visible by the all functions and especially
from Orchestra() and Score(). Everything here is written following the C syntax: synthesis
algorithms, score and declaration of variables and data structures. Everything here is
compiled into machine code and runs at CPU speed. The Init() function includes everything
regarding initialisation and/or loading such as envelopes, tables, samples, delays, reverbs,
variables and data structures. Usually it also includes calls for opening Midi, TCP/IP, Audio
and/or Video Input channels. As a counter part the End() function is called at the end and is
used for closing channel and disposing previously allocated memory.

2.2 Orchestra and instruments

An instrument is defined in the Orchestra() function and consists of code for sound synthesis
and processing; it is continuously called at audio sampling rate, that is 44100 times per
second. An instrument is defined in terms of an ordinary C program (with all the
programming facilities such as for, do-while, and if-then-else control structures) which calls
functions belonging to the DSP.lib; assigning the results of the whole computation to two
predefined “system variables” outL and outR, sound is generated. Look at the following
simple example.

….
 sig = ampli*Env(1)*Oscil(1,freq);
 outL = sig*pan;
 outR = sig*(1.-pan);

where sig is a local variable, ampli, freq and pan are global variables loaded by Score(),
Env(1) and OscSin(1,freq) belong to the DSP.lib and sounds like that:

float Oscil (int nOsc, float freq)
{
 float pos;
 pos = oscPhase[iN][nOsc] + freq;
 if (pos>=tabLenfloat) pos=pos-tabLenfloat;
 if (pos<0) pos=pos+tabLenfloat;
 oscPhase[iN][nOsc] = pos;
 return Tabsen[(long)pos];
}

float Env (int nEnv) // One-shot envelope
{
 float vval,vv,pos;
 long ntabEnv =envNum[iN][nEnv];
 pos = envPos[iN][nEnv];
 vval = *(envTable[ntabEnv] + (long)pos);
 if((long)pos<envLenght[ntabEnv]) envPos[iN][nEnv]=pos++;
 return vval;

}

2.3 The score

Once again the Score() is a C function which prepares parametric values and loads the global
variables (ampli, freq and pan in the example) used by the active instrument in Orchestra().
There exist different modalities for writing a score: following the algorithmic composition

 27. 4

Generative Art 2002

approach, writing sequences of predefined events, getting values coming from the external
gesture interfaces and, finally, combining in different ways these techniques.

Suppose we want to control in real-time a very simple instrument using movements of the
mouse by linking the vertical position to frequency and the horizontal position to left-right
panning. In the MacOs environment, the mouse position is returned invoking the
GetNextEvent(..) tool-box function which leaves the x,y position values in the
“Event.where.v/h” variable and used as follows:

horiz = Event.where.h/1023.;
freq = Event.where.v+200.0;

These two lines make part of the Score() which is automatically and repeatedly called by the
main mechanism. Since the mouse spans between 0 and 1023 horizontally and from 0 to 767
vertically, the variable pan and freq communicate proper values to the instrument for
changing frequency and panoramic position. The following example explains the dynamic
relationship between the Orchestra and the Score.

3. An example of composition

This listing reports a real working example.

//========================= FMouse =======
// global variables

float freq,pan,vert,val;
int enva, samp;
bool mousePressed;
Point position;
//---
int Init ()
{
 float env[]={3, 0.0,0.0, 0.1,1.0, 4.0,0.0};
 enva = NewLinEnv(env);
 mousePressed=false;
 OpenAudio();
}//--
void Finish()
{
 DisposeEnv(enva);
 CloseAudio();
}//--
void Orchestra() // simple FM
{
 iN = 1;
 if (noteon[1]) TrigEnv(1);
 val = Env(1)*Oscil(1,freq+Oscil(2,freq*1.5));
 outR = val*pan;
 outL = val*(1.-pan);
}
//--
void Score ()
{
 if (Button() && !mousePressed)
 {
 iN=1;
 noteon[iN] = true;
 position = theEvent.where;
 pan = position.h/1023.;
 freq = position.v+200.0;
 mousePressed= true;

 27. 5

Generative Art 2002
 }
 if (theEvent.what==mouseUp) mousePressed=false;
}//---

A composition consists of five different sections: -1: global variables declaration for
communication between Orchestra and Score; -2: Init(), for opening channels, declaring
envelopes and delay lines, loading samples, etc..; -3: Orchestra() where sound synthesis and
processing algorithms are defined; -4: Score() defined in terms of algorithms and
management of input data stream coming from external gesture controllers –5: End() for
closing channels and disposing envelopes and samples. Functions in bold belong to the
DSP.lib. Orchestra is automatically called at 44.100 Hz sampling rate and has the priority on
the CPU request; Score is called 50÷100 times per second depending on the complexity of the
synthesis and processing algorithm defined in Orchestra.

Each time the mouse button is depressed (Score has the control) the predefined boolean
variable noteon[iN] is set to true; then, the Orchestra trigs the envelope defined in Init and
sound is produced with pitch related to the mouse vertical position and pan position related to
the mouse horizontal position. The “system” predefined iN variable allows to select different
instruments inside the same Orchestra: what follows the iN variable assignment is related to
that instrument. Actually, the layout of both Score and Orchestra is more complex and
consists of a number of “ case N: break; ” blocks which define different situations at micro
level of sound processing and at macro level of events control.

3.1 The DSP.lib (Digital Signal Processing library)

This is the library of predefined functions which perform the micro level computation for
generating and processing sound. What follows is a very small excerpt of the current
collection of functions at the moment developed and upgraded when requested.

float Noise(); This set of functions performs signal
float Oscil (int nOsc, float freq); generation in accordance to the name
void TrigKarplusStrong(int nOsc); and parameters reported.
float KarplusStrong (int nOsc, float freq);

int NewLinEnv (float v[]); Usually called in the Init
void TrigEnv (int nEnv); This starts the scanning of the envelope
float Env (int nEnv); Used in Orchestra.

int LoadSample (char nomesmp[]); This function load a sample with the specified
void TrigSample (int nSmp); name (for example: sn=LoadSample(“whistle”));
float Sample(int nSmp); This scans and reporst the current sample

float Bandpass(int nFilt, float inp, float freq, float q); This is the set of usual filters.
float Reson(int nFilt, float signal, float freq, float band); Used in Orchestra
float Lowpass(int nFilt, float signal, float cutfreq);
float Hipass(int nFilt, float signal, float cutfreq);

void NewDelay(int nDly, float dur); Define a new delay line of specified duration.
void PutDelay(int nDly, float val);
float GetDelay(int nDly);
void NewReverb(int nRev); Such as NewDelay, called in Init or Score.
float Reverb(int nRev, float sign); Used in Orchestra

 27. 6

Generative Art 2002

void SetFader(int nFad, float startval, float endval, float time); A Fader is an asynchronous task
void TrigFader(int nFad); which starts when TrigFader is called and
float Fade(int nFad); repeatedly used in Orchestra and in Score.

void OpenAudio(); Opens and starts the available audio channel

3.2 Other facilities

It’s also possible to generate (offline or in real-time under control of data streaming from
gesture interfaces) sequences of events automatically activated by the Scheduler(), a special
mechanism which triggers sounds at the right times and change parametric values in the
instruments of an Orchestra. Other facilities supported by the pCM framework are:

void CDtrackSearch (short nTrack); activation of sound tracks of CD
void CDplay (); with complete control of track selection
void CDpause(); pause command,
void CDstop (); stop command
void CDvolume (short vol); and volume control.

Void Record("soundFilename.aiff",60) This is called in the Init and starts the recording of the

global sound result onto memory with no loss of quality.
The file is saved onto disk in .aiff or .wav format.

UDPSend((void *) &udp_out, sizeof(long)); Communication via TCP/IP
UDPReceive((void *) &udp_in, &theUDPDataSize);

void OpenMidi(); Communication via MIDI
void GetMidiData();
void SendMidiMessage(int status, int data1, int data2);
void NoteOn(int chan, int num, int vel);
etc..

Finally, OpenVideo() allows to open a video channel and to grab frames coming from a video
camera. A “videoCallBack” function is installed when the video channel is open and called
as service interrupt routine when a new frame is digitalized and put into memory: analysis of
images is performed by processing the planar x-y matrix of values corresponding to the pixels
of frames. Extracted parameters values from the shape and positions of the performer hands
are then used in real-time the Score part of a pCM project.

4. Conclusion and acknowledgements

The pCM framework has been efficiently used for composing and performing [10,11,12]
many pieces of music under the control of the gesture tracking systems and devices realised at
cART project in Pisa. It has been developed for Mac/Os environment and also included as
special topic in the course of Computer Music I yearly teach at the Computer Science Faculty
of Pisa University. Due to the great interest of the students towards pCM who really like
programming and “put their hands” inside computers, a group of them, particularly skilled
and hardworking, decided to port the pCM framework onto PC/Windows environment
rewriting it following the Object Oriented paradigms and with the obvious name, they claim,
pC++M. Thanks in advance to all of them.

 27. 7

Generative Art 2002

Special thanks are due to Massimo Magrini who greatly contributed to set up the pCM main
mechanism currently in use and the many facilities for data communication and audio
processing. Also thanks to Roberto Neri who recently graduated in Electronic Engineering at
Pisa University with a thesis regarding the upgrading of the pCM DSP.lib.

5. References

 [1] Tarabella L., Bertini G., “Giving expression to multimedia performances” – ACM
Multimedia 2000, Workshop “Bridging the Gap: Bringing Together New Media
Artists and Multimedia Technologists” Los Angeles, 2000

[2] Tarabella L., Bertini G., “Wireless technology in gesture controlled computer
generated music”, Proceedings of Workshop on Current Research Directions in
Computer Music MOSART2001, Audiovisual Institute, Pompeu Fabra University,
Barcelona, nov.2001

[3] R. Bargar, “Multi-modal synchronization and the automation of an observer's point of
view” in Proceedings of the IEEE International Conference on Systems, Man, and
Cybernetics (SMC'98), 1998.

[4] Tarabella L.,Magrini M., Scapellato G., “Devices for interctive Computer Music and
Computer Graphics Performances”, IEEE First Workshop on Multimedia Signal
Processing, Princeton, NJ, USA - IEEE cat.n.97TH8256, (1997)

[5] Rowe R., “Machine Musicianship” Cambridge: MIT Press. ISBN 0-262-18296-8,
pagg. 343-353, March 2001

[6] Tarabella L., Bertini G., Sabbatini T., “The Twin Towers: a remote sensing device for
controlling live-interactive computer music”. In Procs of 2nd international workshop
on mechatronical computer system for perception and action, SSSUP, Pisa, 1997.

[7] Tarabella L., Magrini M., Scapellato G., “A system for recognizing shape, position
and rotation of the hands” in in Proceedings of th Internationl Computer Music
Conference ’97 pp 288-291, ICMA S.Francisco, 1997

[8] Tarabella L., Bertini G., Boschi G. : “A Data Streaming Based Controller For Real-
Time Computer Generated Music” Proc. Int’l Symposium on Musical Acoustics
ISMA 2001, Perugia, Italy, Vol. 2 pp. 619-622, sept. 2001,

[9] Tarabella L., Bertini G., “The mapping paradigm in gesture controlled live computer
music” in Procs of 2nd Conference Understanding and Creating Music, Caserta,
Seconda Università di Napoli, November 2002,

[10] Tarabella L.: “Five minutes for Joseph Beuys”, for electronic viola and Twin Towers
– 49a Biennale di Venezia, Platea dell’Umanità, june 2001

[11] Tarabella L.: “Kite: for copper wire and TwinTowers” – Perfomance commissioned
by the Guglielmo Marconi Foundation and Assindustria Bologna, for the centenary
of the first transatlantic radio-telegraphic transmission. – Sala Farnese, 26.03.2002,
Bologna, Sasso Marconi, 25.04.2001.

[12] Tarabella L.: “Suite for M” for TwinTower and Imaginary Piano – NIME2002,
Media Lab, Dublin. May 25th, 2002.

 27. 8

