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Abstract: 
Over the years generative artists have created art using systems such 
as genetic algorithms, reaction diffusion systems, cellular automata, 
artificial life, deterministic chaos, fractals, and Lindenmayer systems. 
While these systems can offer a seemingly unending stream of visuals 
and sound, they typically do so without discrimination, and they lack any 
self-critical functionality. This is most apparent in genetic or evolutionary 
systems where the fitness function is frequently not automated, and is 
simply the artist making manual interactive choices.  
Computational aesthetic evaluation remains an unsolved problem. Only 
when computer-based systems are both generative and self-critical will 
they be worthy of consideration as being truly creative.  
XEPA is the name of both the art project and individual intelligent 
sculptures that display animated colored light and produce music and 
sound. XEPA is an acronym for “XEPA Emerging Performance Artist.” 
Each XEPA “watches” the others (via data radio) and modifies its own 
aesthetic behaviour to create a collaborative improvisational 
performance. In doing so each XEPA independently evaluates the 
aesthetics of the other sculptures, infers a theme or mood being 
attempted, and then modifies its own aesthetics to better reinforce that 
theme. Each performance is unique, and a wide variety of themes and 
moods can be explored. 
After a system overview, some of the algorithms used in XEPA for color 
scheme selection and pattern generation are presented. In particular 
attention is given to the creation of “painterly” color palettes, complex 
patterns, and emergent synchronization.  
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Premise 

Over the years generative artists have created art using systems such as genetic 
algorithms, reaction diffusion systems, cellular automata, artificial life, deterministic 
chaos, fractals, and Lindenmayer systems. While these systems can offer a 
seemingly unending stream of visuals and sound, they typically do so without 
discrimination, and they lack any self-critical functionality. This is most apparent in 
genetic or evolutionary systems where the fitness function is frequently not 
automated, and is simply the artist making manual interactive choices.  

Computational aesthetic evaluation remains an unsolved problem. Only when 
computer-based systems are both generative and self-critical will they be worthy of 
consideration as being truly creative.  

XEPA is the name of both the art project and individual intelligent sculptures that 
display animated colored light and produce music and sound. XEPA is an acronym 
for “XEPA Emerging Performance Artist.” Each XEPA “watches” the others (via data 
radio) and modifies its own aesthetic behaviour to create a collaborative 
improvisational performance. In doing so each XEPA independently evaluates the 
aesthetics of the other sculptures, infers a theme or mood being attempted, and then 
modifies its own aesthetics to better reinforce that theme. Each performance is 
unique, and a wide variety of themes and moods can be explored. 

After a system overview, some of the algorithms used in XEPA for color scheme 
selection and pattern generation are presented. In particular attention is given to the 
creation of “painterly” color palettes, complex patterns, and emergent 
synchronization. 

1. Generative Art as a Way of Making Art 

In a now decade old paper I offered what has come to be the most widely cited 
definition of generative art to date.  
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Generative art refers to any art practice where the artist uses a system, such 
as a set of natural language rules, a computer program, a machine, or other 
procedural invention, which is set into motion with some degree of autonomy 
contributing to or resulting in a completed work of art. [1] 

The key element in generative art is the use of an external system to which the artist 
cedes partial or total subsequent control. Under the general rubric of complexity 
science various systems, and various kinds of systems, have been studied, 
compared, contrasted, and mathematically and computationally modelled. An 
abstract understanding of systems that spans the physical, biological, and social 
sciences is beginning to emerge. And it is these very systems that are being used as 
state-of-the-art generative systems by artists.  

Things we think of as complex systems defy simple description and easy prediction. 
Many would agree that the most complex systems we encounter are other living 
things. And life requires a mix of order and disorder; order to maintain integrity and 
survival; and disorder to allow flexibility and adaptation. It was this kind of intuition 
that lead physicists Murray Gell-Mann and Seth Lloyd to suggest the notion of 
effective complexity. As illustrated in figure 1 Shannon’s information complexity 
increases with disorder, but effective complexity peaks where there is a mix of order 
and disorder. [2, 3] 

 

Figure 1 – Effective complexity increases in systems that combine order and disorder 

This notion of effective complexity can be used to classify the various systems used 
in generative art. This is illustrated in figure 2. 
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Figure 2 - Generative systems organized by effective complexity 

1.1 Generative Art and Computational Aesthetic Evaluation 

Artists exercise critical aesthetic judgment in all phases of their work. Aesthetic 
evaluation comes into play when studying other artists, while applying micro-
decisions while creating a piece, in learning from a newly created piece prior to 
beginning the next piece, and so on. It also comes into play when trying to categorize 
art as to genre or movement.   

Most generative art systems don’t involve aesthetic evaluation. While the various 
systems noted above can provide an apparently endless stream of forms, images, 
sounds, and so on, selection of results and direction of the systems is left to the 
manual intervention of the human artist/operator. Where the generative system does 
have a form of normative aesthetics it is most typically in the form of purely forward 
generation, and are not applied retrospectively providing a kind of back propagation 
of error measures or other form of feedback. 

Many writers such as Boden emphasize that novelty is a necessary but insufficient 
criteria for creativity. Creativity also carries with it the implication that the results are 
useful or otherwise of value. To fully qualify as creative artists computers will have to 
at least combine generative systems with computational aesthetic evaluation. [4] 
 
This problem is perhaps most acutely felt in the realm of evolutionary art systems. 
When genetic algorithms and other evolutionary approaches are applied to industrial 
applications a key element is the fitness function. For example, the genotype for an 
electronic circuit can be fed to circuit simulation software. The phenotype, i.e. the 
circuit, is then tested virtually with a span of inputs and the resulting outputs. These 
can then be scored with a fitness function that weights the parts count, ease of 
construction, price of components, conformity to input/output specifications, power 
consumption, and so on. Because the evolutionary process is completely automated 
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optimal solutions can be rapidly approximated by allowing gene pools with many 
dozens of competitors evolving for hundreds of generations. 

The problem for generative artists using evolutionary systems is that we don’t know 
how to create general robust aesthetic fitness functions. Outside of some narrow 
automated attempts, the typical solution involves putting the artist in the loop and 
manually scoring each new phenotype. This places a severe upper limit on both the 
size of the gene pool and the number of generations that can be run. This has been 
referred to as “the fitness bottleneck.” [5]  

While it is true that computational aesthetic evaluation remains a fundamentally 
unsolved problem, it is not for lack of trying. [6] There have been attempts to 
measure or define aesthetics in terms of relatively simple formulas, but all 
have been found to be inadequate and problematic. The mathematician 
George David Birkhoff suggested the formula M=C/O where M is the measure 
of aesthetic effectiveness, O is the degree of order, and C is the degree of 
complexity. While the specifics of his proposal were almost immediately 
disproved in empirical studies, he was one of the first to identify complexity 
and order relationships as being key, and was also the first to claim a formula 
rooted in neurology. [7] 

The Golden Ratio φ, an irrational constant approximately equal to 1.618, and the 
related Fibonacci series have been said to generate proportions of optimal aesthetic 
value. This has been contested and arguably debunked by writers such as Livio in 
reputed examples such as the Great Pyramids, the Parthenon, the Mona Lisa, 
compositions by Mozart, and Mondrian’s late paintings. [8] 

Somewhat more successful has been Machado and Cardoso’s adaptation of 
Birkhoff’s aesthetic measure in their NEvAr system. [9] NEvAr generates images 
using an approach first introduced by Sims called evolving expressions. [10] Three 
mathematical expressions are used to calculate pixel values for the red, blue, and 
green image channels. The set of math expressions operates as a genotype that can 
reproduce with mutation and crossover operations. Machado and Cardoso evaluate 
the aesthetics of these images as a ratio of image complexity and perceptual 
complexity. To implement this as an automatic fitness function the degree to which 
an image resists jpeg compression is considered image complexity, and the degree 
to which it resists fractal compression is considered perceptual complexity. They 
reported surprisingly good imaging results but to date there is no particular evidence 
that this approach generalizes to other kinds of images. 

A number of generative artists have observed that success in the realm of 
computational aesthetic evaluation is unlikely until psychological and neurological 
research suggests models of how aesthetics in humans works. While a complete 
robust model is probably many years away, some tantalizing research has been 
offered. 

Rudolf Arnheim applied the principles of gestalt psychology to aesthetic perception, 
and in doing so established the notion of aesthetic perception as cognition. Many see 
this as suggesting that aesthetic perception can be modelled computationally. 
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Unfortunately Arnheim’s theory of aesthetics is much more descriptive than 
normative. Direct application to computational aesthetic evaluation is not obvious and 
would likely require breakthroughs in computer vision well beyond the current 
horizon. 

Daniel E. Berlyne has offered the concept of arousal potential and its relationship to 
hedonic response. Arousal potential is a quantitative property of stimulus patterns to 
arouse the nervous system. He proposes that hedonic response is the result of 
separate and distinct reward and aversion systems. The reward and aversion 
systems activate in proportion to the number of neurons stimulated, and the number 
of neurons responding will increase as a Gaussian cumulative distribution. Berlyne 
further proposes that the reward system requires less arousal potential exposure to 
activate, but that when activated the aversion system will produce a larger response.  

 

Figure 3 - Arousal potential as the summation of two Gaussian cumulative distributions 

From this point of view art works of only moderate information complexity maximise 
the hedonic response. This is consistent with the artistic notion that audiences 
respond best to works that are not so ordered as to be boring, and not so disordered 
so as to be chaotic. An alternate interpretation would be that this response echoes 
effective complexity, and that the human nervous system is optimized for the 
processing of life forms in the natural living world.  

Colin Martindale developed a (natural) neural network model of aesthetic perception 
dynamics he referred to as prototypicality. Martindale suggests that neurons form 
nodes that accept, process, and pass on stimulation from lower to higher levels of 
cognition. Low level processing tends to be ignored, and high level semantic nodes 
encoding for meaning have the greatest strength in determining preference. [11, 12] 

Nodes are described as specialised recognition units connected in an excitatory 
manner to nodes corresponding to superordinate categories. Nodes at the same 
level, however, will have a lateral inhibitory effect. The result is that nodes encoding 
for similar stimuli will be physically closer together than unrelated nodes thus creating 
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semantic fields. As a result the overall nervous system is optimally activated when 
presented an unambiguous stimulus that matches a prototypically specific and strong 
path up the neural hierarchy. Preference is then determined by the extent to which a 
particular stimulus is typical of its class. The obvious suggestion is that computational 
aesthetic evaluation is a strong candidate for an artificial neural networks approach. 
However, the fact that the human brain includes approximately 1015 neural 
connections should give us pause as to how daunting a project that might turn out to 
be.  

2. XEPA and Experiments in Computational Aesthetic Evaluation 

XEPA is an art project that, among other things, introduces a platform for 
experiments in computational aesthetic evaluation. The project is fundamentally 
artistic in motivation, however, and no pretense of controlled scientific research is 
implied. There is, however, an engineering aspect to the work. At the time this paper 
was written XEPA had just reached an alpha-stage of development. The hardware 
design and software possibilities are versatile enough that a number of approaches 
will be possible in the future, and those described here are just a beginning. 

Each XEPA is a light sculpture that can display animated colored light sequences as 
well as high fidelity sound/music. In addition each XEPA “watches” and “listens” to 
the other XEPAs, and then attempts to change its own performance so as to fit in 
better and improve the aesthetics of the group performance. Each performance lasts 
a minute or two, and each performance is a unique improvisation different than the 
rest.  

2.1 XEPA Hardware Design 

As light sculptures each XEPA is constructed using four to eight one meter length 
tubes. XEPAs can be wall mounted, free standing, or suspended sculptures. Different 
installations may have differing numbers of XEPAs of different designs. Each light 
sculpture tube is a milky white diffuser with 16 RGB LED lighting units inside acting 
as 16 pixels. Each pixel is individually addressable as a 24-bit color using the lighting 
industry DMX control protocol. 

Sound is produced using a single studio quality monitor with built-in amplification. A 
typical speaker of this kind is the Genelec 1029A. Because a given XEPA acts as a 
performer or instrumentalist rather than an ensemble, a single speaker rather than a 
stereo pair is appropriate. Various XEPAs will produce sound simultaneously and mix 
in the air not unlike a band using acoustic instruments. 
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Figure 4 – Three wall mounted XEPAs, each about 6 feet tall 

Each XEPA uses three inexpensive processors. An Arduino Mega 2560 is used for 
high-level observation and decision making. The Mega 2560 is an open source 
hardware platform using an ATmega2560 microcontroller chip with 256 KB of flash 
memory for code, 8 KB of SRAM for variable memory, and 4 KB of EEPROM for non-
volatile storage not requiring frequent updates, and 4 UARTS that assist with serial 
communications. 

An Arduino Leonardo is used for real-time DMX communications used to control the 
LED tube animation. Also an open source hardware platform, the Leonardo uses an 
ATmega32u4 microcontroller chip with 32 KB of flash memory for code, 2.5 KB of 
SRAM for variable memory, and 1 KB of EEPROM, and 1 UART for serial 
communications. 

   

Figure 5 – XEPA “Brain” without front acrylic cover and processor interconnects 

The third processor is an open source hardware single-board computer produced by 
Texas Instruments called the BeagleBoard. The BeagleBoard-xM used by each 
XEPA uses a TI DM3730 Processor running at 1 GHz with an ARM Cortex-A8 core. 
The BeagleBoard has 512 MB of RAM for both code and data, and boots from a 4 
GB microSD memory card. The BeagleBoard is designed to be a complete single 
board computer and includes DVI-D video output, USB interfaces, and so on. 
However, XEPA uses the BeagleBoard as a sound engine for real-time high fidelity 
music synthesis, and only requires the built-in audio output hardware, and a USB 
port for serial-over-USB data communications. 
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All three boards are mounted on laser-cut clear sheet acrylic enclosures that can 
either stand freely or be wall mounted. The enclosures are open and clear to present 
the “XEPA Brain” as a deconstructed demystified element.  

  

Figure 6 – XEPA “Brain” interconnection design 

Figure 6 gives some details as to how the three processor boards work together. The 
Mega 2560 has an extra “shield” board for additional circuitry I designed. It provides 
an XBee data radio to broadcast very short messages announcing what the XEPA is 
doing, and picks up broadcast messages from other XEPAs to “view” and “hear” what 
they are doing. The XBee data is transparently presented to the Arduino software as 
serial data. There is also an 8-bit DIP switch that can be used to assign the XEPA a 
unique ID number, or to set various debug modes. The shield also provides a small 
line driver circuit used to convert the +5 volt data from the Leonardo to the balanced 
signal required by DMX. Not shown is a microSD memory card reader that can be 
used in the future. 

As previously noted the Mega 2560 takes care of all higher level functionality 
including “watching” other XEPAs, executing aesthetic evaluation, and deciding what 
light animation and sound phrases will be performed. At regular intervals related to 
the rhythm and tempo of the performance the Mega 2560 sends short commands to 
the Leonardo and BeagleBoard. The Leonardo reacts to each message by executing 
an animation sequence, and the BeagleBoard reacts to each message by generating 
a sound phrase in real-time. 

2.2 XEPA Software Design 

XEPAs create a performance by executing light animation and sound phrases. At the 
beginning of each phrase a given XEPA sends out a message that merely describes 
what that XEPA is doing. In principle it is as if each XEPA is watching all the others. 
There are no “commands” telling each XEPA what to do. Each XEPA decides for 
itself which of the other XEPAs it should adapt to based on their coarse behavior. 

The XEPA algorithms have been heavily influenced by lessons learned from my 
personal experience as an improvisational musician and performance artist, as well 
as ideas noted in the previous section on computational aesthetic evaluation. 
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One lesson is that our perceptual cognition will meet an improvised performance 
more than half way. As Arnheim discovered our gestalt mechanisms will “fill in” and 
otherwise structure our perception to maximize clarity in experience. Each XEPA’s 
performance can only be evaluated in the context of the choices of all the other 
performers. 

Another lesson is that the audience wants to be surprised, but the audience doesn’t 
want to be left behind by a performance too unpredictable to follow. This is not unlike 
Berlyne’s concept of arousal potential and the notion that our perceptual processing 
is tuned for high effective complexity. 

A third, and perhaps most important, lesson is that micro-aesthetic decisions by 
themselves don’t matter nearly as much as the contribution they make to a clear 
high-level semantic impression. This is similar to Martindale’s notion of prototypicality 
where low-level sensations result in successful aesthetics when they resonate with a 
unified abstraction at a high level of cognition.  

XEPA is designed to execute effective improvisations that never repeat. XEPA is not, 
at this time, intended to be a system that learns aesthetics other than being “taught” 
by tables of aesthetic correspondences provided by the artist. In other words the 
current project is to build a system that can gainfully use what it has been force-fed. 
It’s entirely possible that future work can integrate machine learning.  

The visual component can include a large number of color palettes, animation 
sequences, tempos, rhythms, fades, flashes, pulses, and so on in all possible 
combinations. In the current implementation most of the patterns are generated using 
cellular automata in a way that elaborates on my previous pieces RGBCA #1 (2010) 
and RGBCA #2 (2010). Where the earlier pieces strictly assigned an automaton to 
each of the 3 additive primary colors (red, green, blue), XEPA can use an arbitrary 
number of automata combined and mapped into arbitrary color schemes. 

The sound component includes harmonies, scales, finite but large sets of melodies of 
fixed length, timbres, and so on also in all possible combinations. The cross product 
of the audible and visual possibilities further exponentiates the media space.  

A hierarchical model inspired by Martindale is used to gain leverage over this 
combinatorial explosion. A set of high level semantic fields are invented called 
themes. Each theme is a suggestive phrase such as “artic zone” or “house on fire” or 
“spring life.” For each of these every color palette, scale, animation sequence, and so 
on is given a weight based on artistic intuition. For example, a palette of blues and 
whites would be given a large weight for the theme “artic zone”, while a palette of 
reds and yellows would be given a low weight for that particular theme. While this is a 
combinatorial burden, it’s not at all impossible for twenty or so themes.  

In performance each XEPA independently executes table-driven computational 
aesthetic evaluation of the other XEPAs, and then adapts its own performance. Each 
follows this general algorithm: 
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• Whenever a new packet is received from another XEPA 

o Time-stamp the packet for possible later synchronization 

o Compare the packet (genotype) to the weights for each theme 
generating an error score (fitness score) for each 

• At the end of a phrase compare your error score to the error scores of the 
other XEPAs  

o If there are lower error scores use a Monte Carlo technique to select 
the genotype of another XEPA 

o Apply crossover to the current genotype using the selected genotype 

o Synchronize with the selected XEPA 

XEPAs initialized in random states will execute this quasi-evolutionary system in a 
loosely coupled manner. Over time the performing XEPAs will converge on a 
coherent theme.  

3.0 How XEPA implements “painterly” color palettes 

In previous light sculptures I’ve noted a dominance of cool colors and a lack of strong 
yellows and oranges. In LED pieces yellow is typically created by mixing a red LED 
and a green LED. The balance of these two light sources is delicate, and it can be 
difficult to get a yellow without a green or orange tint. 

In fact my informal survey of generative works that create color palettes reveals a 
similar dominance of cool blues, greens, and violets, and fewer warm reds, oranges, 
and yellows, and especially a lack of subtle steps between. Light pieces in particular 
lack a painterly use of color and will over-emphasize the harsh additive secondary 
colors magenta and cyan. 

This is all primarily due to the use of the additive RGB color system and the resultant 
spacing of colors around the color wheel. The typical RYB subtractive system used to 
describe color mixing in paints spreads the warm colors further around the color 
wheel. 

It’s interesting to note that if one uses the HSV color mode in either Adobe 
Photoshop™ or the Processing programming language, or virtually any other digital 
color application, one will get the cool color dominant spacing seen in the RGB color 
wheel. The upshot of this is that if hues are selected “randomly” one gets more cool 
colors than warm colors. The difference between the two is clearly shown in figure 7 
and figure 8.   
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Figure 7 – The additive RGB system (left) versus the subtractive RYB system (right)  

 

     

Figure 8 – Random RGB colors (left) versus Random RYB colors (right)  

In order to achieve a more even handed balance of warm and cool colors, and to 
encourage painterly color palettes, XEPA does all of its color calculations and 
representations using a RYB color system. Those colors are converted into the 
device specific RGB values needed by the lighting fixtures late in the process at the 
device driver level. In other words XEPA uses a RYB system.  

But in order to achieve a more painterly look the RYB system one would get simply 
by interpolating primary and secondary color values has been modified a bit by eye. 
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Figure 9 – The RYB system (left) versus the RYB Plus system (right)  

In XEPA the color system is defined by the 12 primary, secondary, and tertiary colors. 
Hues in between those colors are calculated by linear interpolation. To my eye the 
color spacing of three of the tertiary colors are subjectively too biased to one side. 
These have been manually adjusted to move red-violet half again towards violet, 
green-yellow half again towards yellow, and blue-violet half again towards violet. I 
believe this helps all 12 colors to claim a distinct place in the color semantic space. I’ve 
named this color system RYB Plus. 

It’s important to note that the spacing around the color wheel does more than just 
balance cool and warm colors in the case of random selection. Perhaps more 
importantly it has a significant impact on the generation of color schemes using color 
harmony, i.e. relative spacing on the color wheel. This is where the aspect of creating a 
painterly palette comes to the fore. 

The impact on color schemes is demonstrated in figure 10 (3 colors evenly spaced 
around the color wheel) and figure 11 (4 colors evenly spaced around the color wheel). 
 
The details of the RGB, RYB, and RYB Plus systems are shown in the final figures. 
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Figure 10 – A comparison of triadic color schemes in the three color systems  
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Figure 11 – A comparison of tetradic color schemes in the three color systems  
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Figure 12 – How RYB and RYB Plus are mapped into RGB in the device driver  
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Figure 13 – Interpolation of RGB values for the RGB (top), RYB (middle), and RYB 
Plus (bottom) systems  
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