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Abstract

Human artistic creativity typically includes a self-critical aspect that guides innovation 
towards a productive end. It seems likely that truly creative computers in the arts will 
require  a  similar  ability  to  make  aesthetic  evaluations.  Attempts  to  build  such 
systems, however, have so far mostly failed.

Part  of  the  challenge  is  understanding  the  actual  mechanisms  that  underlie 
aesthetics  as  experienced  by humans.  To  date  scientific  progress  towards  such 
understanding has been incomplete. Nevertheless some useful contributions include 
suggested  theories  from  the  field  of  evolutionary  psychology,  models  of  human 
esthetics  from  psychologists  such  as  Arnheim,  Berlyne,  and  Martindale,  various 
empirical studies of human aesthetics, and a growing literature in the nascent field of 
neuroaesthetics.

A common thread found in all of the above is the notion of complexity as applied to 
the aesthetic perception of art objects and events. It is suggested here that notions 
of complexity regarding art have lagged the new paradigms offered by complexity 
science, and that a more contemporary conception of complexity can integrate and 
improve  older  theories  of  aesthetics.  This  may  be  where  the  path  to  improved 
computational aesthetic evaluation begins.

1. Introduction

In previous writing I have outlined the current challenges in evolutionary art practice.  
These include art theoretical issues such as the notion of “truth to process.” There is 
also  the  technical  challenge  of  vastly  increasing  the  complexification  capacity  of 
evolutionary systems by introducing multi-level  emergence.  The final  challenge is  
very much related to this paper. It involves automating an aesthetic fitness function 
via  computational  aesthetic  evaluation  so  that  the  need for  human  interaction  is  
eliminated. [1, 2]

Typical  industrial  applications  of  evolutionary  computing  search  a  solution  space 
optimizing a predefined fitness function, thus selecting superior candidates from the 
population.  Because  such  a  fitness  function  can  be  evaluated  mechanically  the 
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system  can  run  numerous  generations  without  human  intervention.  Attempts  to  
create  objective  fitness  functions  to  judge  aesthetics  in  have,  for  the  most  part, 
failed. And successful aesthetic fitness functions have tended to be for very specific 
needs and do not generalize well. [3] Because of this evolutionary systems for art  
and design typically have one or more humans judging each individual in the gene 
pool  based on the aesthetic  quality they find in the work.  This  creates a “fitness 
bottleneck”  greatly limiting the number of  generations that  can run, which in turn  
limits the degree to which the art or design can evolve. [4]

Computational  aesthetic  evaluation remains a significant  unsolved problem in the 
field  of  generative art.  And the need for  machine evaluation is broader than that  
required for evolutionary approaches. Just as artists and designers exercise critical 
aesthetic judgment in their creative work, it seems reasonable to think that a truly  
creative computer would require some form of self-critical functionality.

A  problem  quickly  encountered  when  thinking  about  computational  aesthetic 
evaluation is that of  human aesthetic evaluation. A recurring theme in aesthetics is 
the balance of order and complexity. For example, it is this balance referred to in  
Coleridge’s notion of beauty as “unity in variety.” To pursue these issues scientifically 
we  need  a  suitable  understanding  of  complexity  and  order,  as  well  as  robust 
psychological models of human aesthetic experience. 

2. Models of complexity

In a 1998 lecture by Feldman and Crutchfield at the Sante Fe Institute well over 
a dozen competing theories of complexity were presented. [5] But there are 
generally two families of complexity models. The first type of model defines 
complexity as being the opposite of order. The second type of model defines 
complexity as being a careful balance of order and disorder. Examples of both 
follow.

2.1 Shannon Information and Algorithmic Complexity

In 1948 Claude Shannon launched the field of information theory. [6] Shannon was 
interested in measuring and quantifying communication channels in terms of their  
capacity. His insight was the idea that the more “surprise” a channel presents the  
greater the amount of information delivered.  In addition, the more information there  
is in the channel the less ordered it is, and the less it can be compressed without 
loss.  In Shannon’s paradigm complexity is proportional to the amount of information. 
And so the more disordered a channel is the more complex it is.

For example, a channel that only delivers the letter “a” over and over again offers no  
surprise  and  delivers  no  information.  It  offers  a  high  degree  of  order  and  can 
potentially be compressed to a single letter.

A channel that delivers typical English language sentences delivers quite a bit more 
information. But that information is still somewhat redundant and is not maximally 
surprising. For example, if  the characters “elephan” come out of  the channel one 
expects the next character to be a “t.” 
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The channel that has maximal information is the one that delivers entirely random 
characters. In such a channel every character matters and if a single one is lost it 
can’t  be  recovered  based  on  the  surrounding  characters.  A  string  of  random 
characters cannot be compressed without loss and is maximally disordered.

Kolmogorov, Solomonoff,  and Chaitin independently developed similar ideas in the 
context of computation. In their work algorithmic complexity is proportional to the size 
of the smallest program, including both code and data, that  can execute a given 
algorithm. [7-9]

Similar to the above, a program that generates an infinite number of “a” characters  
can be very small. Such a program has very low algorithmic complexity. A program 
that  delivers English language text  will  be larger,  but  can still  take  advantage of 
redundancies in the language to achieve some compression. A program that delivers 
an  equal  number  of  random characters  will  be  larger  still  because  there  are  no 
redundancies in strings of random characters.

In  short,  in  the  cases  of  both  information  theory  and  algorithmic  complexity  low 
complexity corresponds to both high degrees of order and compressibility. And high 
complexity corresponds to high degrees of disorder and incompressibility.
 
From this point of view the most complex music would be white noise and the most  
complex  digital  image  would  be  random pixels.  But  to  a  listener  all  white  noise 
sounds alike, and to a viewer all random pixel images look alike. Is this really what  
we mean when we speak of complexity in the arts?

2.1 Effective Complexity

With the advent of complexity science as a discipline, defining order and complexity 
has  become  much  more  problematic.  But  for  many  in  the  complexity  science 
community  the  notion  of  complexity as presented above doesn’t  square with  our  
everyday experience. Arguably the most complex systems we encounter are other 
living organisms. And life requires both order maintaining integrity and persistence, 
and disorder allowing adaptation, change, and flexibility. 

Murray Gell-Mann has proposed the notion of effective complexity, a quantity that is 
greatest when there is a balance of order and disorder such as that found in the 
biological  world.  [10]  Unlike  information  and  algorithmic  complexity,  effective 
complexity is  not  inversely proportional  to  order  and  compressibility.  Rather  both 
order and disorder contribute to complexity. (See figure 1). 
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  3. Psychological Models of Aesthetics

In considering human models of aesthetics researchers in the sciences have 
also invoked notions of complexity and its relationship to beauty. 

3.1 Birkhoff’s Aesthetic Measure and Information Aesthetics

The mathematician George David Birkhoff published a mostly speculative book 
in 1933 called “Aesthetic Measure.” He proposed the formula M=O/C where M 
is the measure of aesthetic effectiveness, O is the degree of order, and C is the 
degree of complexity. Birkhoff notes, “The well known aesthetic demand for 
‘unity in variety’ is evidently closely connected with this formula.” [11]

But what is complexity? And what is order? It is sometimes forgotten that 
Birkhoff began with an explicit psychoneurological hypothesis. Birkhoff 
suggested that C and O are proxies for the effort required (complexity) and the 
tension released (order) as perceptual cognition does its work. But as a 
practical matter Birkhoff quantified complexity and order using counting 
operations appropriate to the type of work in question.

For some Birkhoff’s formula seems to measure orderliness rather than beauty, 
and penalizes complexity in a rather unqualified way. [12]

I would suggest that Birkhoff intuitively equated complexity with disorder in a 
way consistent with the information theory and algorithmic complexity 
paradigm. And indeed, in an attempt to add conceptual and quantitative rigor, 
Max Bense and Abraham Moles restated Birkhoff’s general concept in the 
context of Shannon’s information theory creating the study of information 
aesthetics. [13, 14]

3.2 Daniel Berlyne and Arousal Potential
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 Daniel  E.  Berlyne  was  a  psychologist  widely  noted  for  his  work  regarding 
physiological arousal and aesthetic experience as a neurological process. One of  
Berlyne’s  significant  contributions  is  the  concept  of  arousal  potential  and  its 
relationship to hedonic response. 

Arousal potential is a property of stimulus patterns and a measure of the capability of  
that  stimulus to arouse the nervous system. Arousal  potential  has three sources; 
psychophysical  properties  such  as  very  bright  light;  ecological  stimuli  such  as 
survival  threats  like  pain;  and  especially  what  Berlyne  called  collative  effects.  
Collative effects are combined, comparative, context sensitive experiences such as 
“novelty, surprisingness, complexity, ambiguity, and puzzlingness.” Berlyne explicitly 
notes  the  correspondence between many of  these collative effects  and concepts 
from Shannon’s information theory. [15] 

Berlyne proposes that the hedonic response, that is the aesthetic sense of pleasure 
and pain, is the result of separate and distinct reward and aversion systems. Each of 
these systems is made up of neurons. The firing thresholds of individual neurons will  
vary according to a Gaussian probability distribution, and so the number of neurons 
responding  will  increase  as  a  Gaussian  cumulative  distribution.  Berlyne  further 
proposes that the reward system requires less arousal potential exposure to activate,  
but that when activated the aversion system will produce a larger response. (See 
figure 2.)
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The result is the hedonic response as a summation of the positive reward system 
and  the  negative  aversion  system  known  as  the  Wundt  curve.  With  no  arousal 
potential there is a hedonic response of indifference. As more arousal potential is 
presented  the  hedonic  response  increases  manifesting  itself  as  a  pleasurable 
experience. Beyond a certain point, however, the aversion system begins to activate. 
As the aversion system reaches higher levels of activation the hedonic response will  
lessen and eventually cross into increasing levels of pain.

For  Berlyne  increasing  collative  effects  such  as  novelty  and  surprise  also 
represent  increasing complexity in  the information theory sense.  From this 
point  of  view  works of  only moderate  information complexity maximize the 
hedonic  response.  This  resonates  with  the  intuitive  artistic  notion  that 
audiences respond best to works that are not so static as to be boring, and yet 
also  operate  within  learned  conventions  so  as  to  not  be  experienced  as 
chaotic.  But this also means there is  no obvious mapping of complexity to 
aesthetic value. 

3.3 Colin Martindale, Prototypicality, and Neural Networks

Psychologist  Colin  Martindale  published  a  series  of  experiments  that  seemed  to 
contradict  the  arousal  potential  model  of  Berlyne.  For  some  Berlyne’s  notion  of  
collative effects was already problematic.  Terms like novelty and complexity were 
slippery both in specification and mechanism. 

But Martindale’s primary critique was empirical. For example, contrary to Berlyne’s 
model  he  found  that  psychophysical,  ecological,  and  collative  properties  are  not 
additive,  nor  can they be traded  off.  And much  more  often  than  not,  empirically 
measured responses do not follow the inverted-U of the Wundt curve but rather are  
monotonically increasing. Finally, a number of studies showed that meaning, rather  
than pure sensory stimulation, is the primary determinant of aesthetic preference. 
[16-18] In  a series of  publications Martindale developed a natural  neural network  
model  of  aesthetic  perception  that  is  much  more  consistent  with  experimental 
observation. [19-21] 

Martindale first posits that neurons form nodes that accept, process, and pass on 
stimulation from lower to higher levels of cognition. Shallow sensory and perceptual 
processing  tends to  be  ignored.  It  is  the  higher  semantic  nodes,  the  nodes that  
encode  for  meaning,  that  have  the  greatest  strength  in  determining  preference. 
However,  should the work carry significant  emotive impact  the limbic system can 
become engaged and dominate the subjective aesthetic experience.

Nodes  are  described  as  specialized recognition  units  connected  in  an  excitatory 
manner  to  nodes corresponding to  superordinate  categories.  Nodes at  the  same 
level, however, will have a lateral inhibitory effect. Nodes encoding for similar stimuli  
will  be  physically  closer  together  than  unrelated  nodes.  And  so  nodes  encoding 
similar and related exemplars will tend towards the centre of a semantic field. The 
result is that the overall nervous system will be optimally activated when presented 
an unambiguous stimulus that matches a prototypically specific and strong path up 
the neural hierarchy. (Martindale 1988b)
Martindale  doesn’t  reference  notions  of  complexity,  but  he  does  make  Berlyne’s 

page 405



13th Generative Art Conference GA2010

appeal to information theory notions of complexity even more vulnerable. Martindale 
also introduces higher  forms of  cognition as important  and frequently dominating 
aspects of aesthetic experience. 

But it is hard to reconcile Martindale’s neural prototypicality and high level cognition 
with known aesthetic experiences such as encounters with the sublime or the variety 
aspect of “unity in variety.”  Prototypicality would seem to shun variety and fall short  
of processing extraordinary sensation as pleasure.

4. A Neuroaesthetic Complexity Model

Neuroaesthetics  is  the  study of  the  neurological  bases for  all  aesthetic  behavior 
including the arts. A fundamental issue in neuroaesthetics is fixing the appropriate  
level of inspection for a given question. It may be that the study of individual neurons  
will illuminate certain aspects of aesthetics. Other cases may require a systems view 
of various brain centers and their respective interoperation. [22]

In the realm of aesthetics Berlyne, Martindale, and Birkhoff somewhat anticipated the  
neuroaesthetic approach. Each, however, has significant problems.

Both Berlyne and Birkhoff  treat order and complexity as opposites. This approach 
convolves complexity with disorder, and eliminates complexity as a direct predictor of 
aesthetic quality. 

There  is,  however,  another  interpretation.  The  notion  of  Gell-Mann’s  effective 
complexity  was  previously  mentioned.  From  that  point  of  view  complexity  is  a 
balance  of  order  and  disorder.  Comparing  Berlyne’s  Wundt  curve  with  a  plot  of 
effective complexity versus order, it  is notable that  both peak in the middle. This  
suggests that positive hedonic response may be proportional to effective complexity. 
Effective complexity has, in a sense, the balance of order and disorder “built in.” And 
the idea that extreme order under-stimulates and extreme disorder over-stimulates 
seems quite plausible.

Martindale’s model of aesthetics is based on current thinking about neural networks 
and thus has an intrinsic connection to complexity theory. It engages the notion that  
masses of smaller entities can have local interactions that create emergent behavior 
at a larger scale. What it lacks is an explanation as to why a prototypical response 
should  be  experienced  as  pleasurable,  and  how  it  is  that  prototype-defying 
experiences like encounters with the sublime can nevertheless bring about intense 
aesthetic pleasure.

In response to these concerns, I am suggesting that in the context of aesthetics the 
information  theory-based notion of  complexity be abandoned in  favor  of  effective 
complexity.

There  is  a  plausible  evolutionary  basis  for  suggesting  that  effective  complexity 
correlates well with aesthetic value.  Effective complexity is maximized in the very 
biological systems that present us with our greatest opportunities and challenges. 
And so there is great survival value in having a sensory system optimized for the 
processing of such complexity.  
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And there is additional survival value in our experiencing such processing as being 
pleasurable. As in other neurological reward systems, pleasure directs our attention 
to  where it  is  needed most.  Reward systems for  food and sex direct  our activity  
towards important survival behaviors. In a similar way our aesthetic reward system 
encourages us to  seek stimuli  with  high effective  complexity content;  the  kind of  
stimuli associated with social interactions and the biological world.

This  aesthetic  reward system is suggested to  be a low-level  generic feature that 
operates throughout the entire nervous system. However, efficient processing in a 
given region is sufficient to trigger the reward system. This provides a corrective to 
Martindale’s notion of prototypically. What is rewarded isn’t matching prototypes per 
se, but rather the full and efficient exploitation of our complexity-tuned neural system. 
Matching prototypes just happens to be one of several ways to do that. 

Because it operates in a distributed low-level manner, an aesthetic reward system 
can respond to various levels of cognitive abstraction. Full and efficient information 
processing by a system tuned for complexity is what is rewarded. So, for example, 
aesthetic pleasure could result from the efficient processing of complex meanings.  
But it could also result from the immersive preverbal experience of the sublime.  

A widely distributed low-level aesthetic reward system might also explain why certain 
mathematical proofs, or chess moves, or philosophical arguments are said to have 
aesthetic value. Such experiences fully and efficiently engage some neural region,  
and this triggers the aesthetic reward system. 

And so to summarize this model of neuroaesthetic complexity:

• Unlike information or algorithmic complexity, effective complexity comes with 
the balance of order and disorder, or expectation and surprise, built in.

• There is survival value in gathering as much information as possible short of 
being overstimulated.

• In  terms  of  survival  our  most  difficult  transactions  are  those  with  other 
complex systems.

• So our nervous system evolved to  optimally process information  regarding 
other complex systems.

• And a reward system evolved to encourage us to fully utilize that capacity.

• Aesthetic pleasure is what that reward system feels like.

• The balance of  unity and variety in aesthetics reflects  our nervous system 
being tuned to process effective complexity. 
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The adoption of effective complexity as a guiding principle in aesthetics will 
not address all  aspects of the computational aesthetic evaluation challenge. 
Nor  will  this  model  of  a  complexity-tuned,  efficiency  triggered,  aesthetic 
reward system. But it seems plausible that they will advance the cause.
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