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Abstract

The paper starts with a brief motivation for the present type of work. The ecological argument,

the world view argument and the argument in terms of understanding intuition are

summarized. Then, a particular approach to the generative construction of organic forms is

developed. The forms are based on variations of the ‘heart transform’. These variations allow

one to construct two- and three dimensional visualizations of high-dimensional objects. The

resulting forms can be described as ‘organic’ and complex, but some basic features, such as

the requirement that a construction should be broader at its basis than at its top, or that it

should be more fractal at its boundary than at its center, can be controlled. The representations

of some sets of high-dimensional points are aesthetically more attractive than the

representations of other sets. It is discussed how this leads to the possibility of an aesthetic  -

instead of an algorithmic-  basis for decisions on class-membership, and how this may shed

light on the difference between algorithms and intuition. 

1. Introduction

In this introductory section, we spell out our three main reasons for doing the present type of

research. We differentiate between the cognitive-ecological argument, the world view

argument, and the argument concerning the understanding of intuition. A new approach to the

construction of generative organic forms and its context are described in the next sections.

1.1 The cognitive-ecological argument

It has been conjectured that different types of visual environments are processed in different

ways by brains [1]. Environments with relatively simple part-whole structure can be

represented by 3D-representations. Such representations have hierarchical structure. At each



level, an object, or part of it, is described in terms of simple forms or ‘geons’ [2] (see also

[3]). At the next level, a geon can be split in different geons that correspond with a more

detailed representation of part of an object or scene, and so on. 3D-representations have been

called ‘schematic’ or ‘topological’ images [3]. The word ‘schematic’ refers to the fact that

they are much more simple than the perceptual patterns from which they are derived. Many

kinds of variations are filtered out during the process that leads to their identification. They

are associated typically with concepts at the basic level of abstraction [4]. Due to the

prominence of these concepts in verbal knowledge, these images contribute in an important

way to the meaning of words. The term ‘topological’ refers to the fact that the relations

between parts of such images are not specified in precise, metric terms, but only in

approximate, topological terms.

3D-representations are crucial for the representation of functional information, as well as for

reasoning about functional relations. This is due to the fact that the part-whole structure of an

object is very informative for the types of function that an object can have [5]. Further, the

relative remoteness from perception of this type of image allows for manipulations in the

images that are not direct reflections of changes in the perceptual environment. They are

suited for contemplation of variations in part-whole structure and they may lead to the

detection of new functional properties. 

Still, these images have a number of limitations [4]. In different contexts, they are too remote

from perception in order to still allow concise recognition of stimuli in the outer world. For

instance, a schematic image of a face allows one to identify the face as a face, but for subtle

variations of non-verbal facial communication, the representation is not rich enough. Also,

such images are too imprecise to be of use as a basis of spatial locomotion. Further, they are

not suited as a basis for aesthetic appreciation. Such processes need another type of image as a

point of departure.

It can be conjectured that the latter do not result from 3D-representations by addition of

significantly more geons, or by extending them with other types of information (such as

information about texture or color). The dependence of 3D-images on topological relations

makes them too imprecise for particular recognition tasks and for aesthetic appreciation of

complex environmental stimuli. Further, a brain appears to have upper bounds on its structural

capacity when hierarchical structures are concerned. In linguistic contexts, sentences with too

many nested sub-sentences become non-understandable. The tight relation of 3D-



representations with linguistic processing suggests that also here, the structural complexity of

representations is subject to upper bounds. Therefore, another, less abstract type of mental

image is required. These ‘metric’ images have been assumed to be more close to the 2-1/2D

stage in Marr’s schema [4].

For our present concern, it is of importance to notice that some external stimuli are more

prone than others to give rise to processing with help of 3D-representations. Typically, man

made objects that are inserted in the landscape are put there with a particular function. The

part-whole compositions of the objects are dictated by this function, and a 3D-representation

reflecting this composition is straightforwardly generated. This contrasts with many types of

natural environments. A mountain landscape, a place in a wood, or even a single tall tree, is

too complex in order for a concise 3D-representation to be generated if the latter is of bounded

complexity. This means that human intervention in the landscape gives raise to an increase in

stimuli that can be processed in one particular way. As a consequence, people more often

activate this type of representation, and the necessity to exercise other types of representation

fades.

If less occasions leading to the activation of one type of representation are present, the

proximal cognitive processes (i.e. the processes taking this type of representation as input) are

triggered less often too, and may even decrease in subtlety, as the self-organizing brain

depends on training to refine the differentiations it makes. This way, a vicious circle appears:

people change their visual environment by replacing natural forms with 3D-codable ones. As

a consequence, their brains become less specialized to process natural environments, and the

appreciation of the latter becomes based on coarser cognitive processes. And hence, the

pressure to further replace the natural environment can increase, for one cares less if things

that are not fully appreciated disappear. Then, opportunities to exercise processing of natural

environments further decrease, and the circle is closed. Hence, organic architecture may play

an important cognitive-ecological role. If it is processed in the way in which natural

environments are processed, neural processes that are specialized in natural environments can

be activated, and the vicious circle can be counteracted.

This line of thought was anticipated by philosophers like Heidegger [6], who differentiate

between functional environments (Bestand) and non-functional ones (Gegenstand). When the

former type of environment starts prevailing in a systematic way, our daily consciousness is

affected much stronger than may appear at first sight.



1.2 The world view argument

The argument of section 1.1 applies to any kind of architecture that uses organic forms,

generative or not. The arguments of 1.2 and 1.3 only hold for particular generative methods.

In renaissance times, architecture reflected a view on the world, and a particular way of

dealing with knowledge. Scientific knowledge and intuition were expressed in major

architectural works. Once created, these works in turn were used as frames for further

structuring knowledge (see the classical work of Yates [7]). Through the ages, the link

between art and science has remained, not only in the sense that science and technology

allowed for new material substrates or carriers of art, but also in the sense that scientific

insights have inspired artists. For instance, about one century ago, around (and even before)

the advent of restricted relatively, the art community was fascinated by the idea of higher

dimensional spaces, an idea that inspired writers, but also painters like Picasso [8]. These

days, genetic art and chaos- or fractal-based art testify of a similar interaction.

In present day architecture, such links are relatively rare. There are, however, a number of

possibilities to link architectural constructions with insights into the workings of nature and of

the brain:

i. The first possibility that comes to mind is the link between architecture and evolutionary

theory (and that has been explored by Soddu [9]).

ii. The second possibility is a link between architecture and fundamental physical theories.

Different roads may be followed. For instance, the visual beauty of some of the

representations studied in the context of chaos and fractal theory is well known. However,

they appear not to have found their way to architectural design. As another instance, it is well

known that different fundamental physical theories deal with more than three dimensions.

There are mathematical tools to visualize high-dimensional objects. Some of them lead to

objects of remarkable organic shape.  Section 3 of this paper gives an instance of such an

approach.

iii. Generative art has been linked with problem solving. For instance, benchmark problems of

neural networks can be solved with help of cellular systems in such a way that the solution is a

beautiful fractal [10,11]. The efficiency of these systems (in comparison with other artificial

intelligence methods) has recently been demonstrated [12]. Section 4 explains another

perspective on the link between art and cognitive problems.



In sum, architecture can integrate different fundamental features of our world view. As such, it

can counter the post-modernist scattering of  our ‘life-world’, and give more meaning to

objects that often have a functional meaning only.

1.3 Increasing our understanding of how intuition may work

The difference between intuitive knowledge and algorithmic knowledge remains a 

controversial issue in cognitive science and in artificial intelligence theory. Some would say

that both are generated by neural networks, whereas others -such as Penrose- postulate a

fundamental distinction, and put forward that intuition is fundamentally non-computational

[13]. This paper explores the possibility that intuition, in contradistinction with algorithmic

problem solving,  has a fundamental aesthetic component. Suppose that, in a problem solving

context, examples are collected, and that they are grouped into classes. Suppose that examples

are represented as points in some high-dimensional space. The method to be explained in

section 4 gives a two- or three-dimensional visual representation for both the examples and

the classes. Then, purely aesthetic criteria referring to the visualizations may serve as a  basis

to decide if newly encountered examples can be included in one of the classes, or as guides to

define the classes themselves.

Since the method at issue is basically the same as the one that was used to construct forms

aimed to be of use in generative design contexts, the philosophical and scientific study of

intuition can be straightforwardly linked with these contexts. We wish to see this as an

argument in itself, but this point evidently strengthens the argument of 1.2.

2. The heart transform and two-dimensional representations of
high-dimensional geometric objects

The approach to organic forms that is pursued in this paper has a particular transformation at

its core. It is named the ‘heart transform’ H because of the fact that, for certain values of its

parameters, it takes the form of a heart. Mathematically, it is a function that maps an n-

dimensional space on an n-dimensional space. By application of an iteration process, its

‘amplified’ form AH maps an n-dimensional space on an m-dimensional space, where m can

be equal to or smaller than n. For instance, AH can be used to give 2- and 3-dimensional

representations of high-dimensional geometric objects. Suppose that p=(p1, p2, …,pn) is a



fixed point of an n-dimensional space I. The coordinates of this point are parameters of H. H

transforms a vector x=(x1,…,xn) into a vector y=(y1,…,yn) in accordance with:

y1= p1+(a/b)q .(x1-p1)

…

yn= pn+(a/b)q .(xn-pn)

with:

a = max {|x1-p1| ,…, |xn-pn|}

b = ((x1-p1)2+…+(xn-pn)2) (1/2)

q is a parameter that is put to 2 in the illustrations of this paper (except in case of Figure 9)

H can be applied on all points of I or on a subset S of I. Suppose that n=2, that S is the surface

contained in the circle with centre (300,300) and radius 300, and that p1=p2=600. Then, the

image of S by application of H is shown in Figure 1. For p1=p2=300, the image of S is given

in Figure 2.

Figure 1.Transform of a circle for p1=p2=600



Figure 2. Transform of a circle for p1=p2=300

Consider a two-dimensional heart transform. Since its output is a two-dimensional point, the

transform can be iterated n times. A two-dimensional form can be associated with an n-

dimensional vector v=(v1,…vn) if, at the k-th step of the iteration, vk is inserted as a parameter

that modifies the transform. Consider a point x that belongs to a subset S of the two-

dimensional plane. AH(x) is obtained in n iterated steps, where each step has three parts.

Suppose that after the k-1-th step, xk-1 was obtained. Then,

1. H(xk-1) is computed

2. Subsequently, this point is rotated around (p1,p2) with a angle �=vk (�+�.h.f), with:

� is a constant phase factor and � is a constant

h=(b/�)2, where b is the distance between H(xk-1) and p, and � is another system

constant

f=1+cos(2.k.�), where � is the angular coordinate of x, and k is the number referring

to the iteration (so that for the first step, k=1).

3. Finally, the resulting point is subject to a scaling transform relative to p. The scale s is

determined by s=1+�.cos (2.k.�) , where ��is another system constant



Intuitively, vk determines the direction and the magnitude of the rotation at step k. The

magnitude of the rotation is larger for points that are far from p (this is the meaning of the

quantity h). This helps to fractalize forms near their boundaries, whereas their interior remains

relatively homogenous. The quantity f, as well as the scaling operation in step 3, may remind

one of the Mandelbrot transform. Also there, the angular coordinate of a point determines its

extent of rotation, after which a scaling relative to the origin is applied. But there are two

important differences. First, the angular coordinate involved remains the coordinate of the

starting point x (and hence is not the angular coordinate of the iterated point H(xk-1)). Second,

unlike in case of the Mandelbrot transform (where the scaling is a function of the distance of a

point from the origin), the scaling operation itself depends on the angular coordinate. The

former difference prevents volatilities of the form from becoming very wild. The second

difference compensates for this reduction in complexity by insertion of a more modest source

of fractality. Nevertheless, some of the forms obtained by the present method have some

coarse visual Mandelbrot-like features.

We illustrate the procedure for forms associated with eight-dimensional binary points. Figure

3 shows the form that is associated with u=(-1,-1,-1,-1,-1,-1,-1,-1), and that results when

AH(x) is applied to the inner area of the circle S with center (300,300) and radius 300. For the

same set S, Figure 4 shows the form that is associated with v=(1,1,1,1,1,1,1,-1). Both forms

are drawn for p1=p2=300. The color in the forms is dictated by the distance between x and p.

Forms are drawn from outward to inward (so that the images of points closer to p are drawn

on top of the images of more distant points).



Figure 3. Form that is associated with u=(-1,-1,-1,-1,-1,-1,-1,-1)

The present method associates a form with every point of a space of arbitrary dimension. The

higher this dimension, the more fractal the nature of the form. If high-dimensional, non point-

like geometric objects are conceived as sets of points, then they can be mapped on sets of two-

dimensional forms. These forms can be combined in different ways in order to obtain a two-

dimensional representation of the object. Section 4 has some illustrations of one instance of

such a combination.



Figure 4. Form that is associated with v=(1,1,1,1,1,1,1,-1)

3. The heart transform and three-dimensional representations of n-
dimensional points

3.1 Three dimensional renderings of 2-dimensional images of n-dimensional
points

The two-dimensional forms of section 2 can be interpreted as top-views of 3-dimensional

objects. Suppose that, like in section 2, b is the distance between a point x�S and p. Suppose

that S is a circle with center p radius r. One can define a cone in three dimensions by the

specification that, for x=(x1,x2), a third coordinate is defined by x3=b. The height of the cone

is zero at the boundary of S, and is equal to r at its center. Every point on this cone can be



mapped on a new three-dimensional point by AH(x) by the specification that the first two

coordinates of the new point are the two coordinates provided by AH(x) and that the third

coordinate remains equal to b. This way, the original cone is deformed into an organic volume

that keeps the global property of being broad at the basis and small at the top. Since in Figures

3 and 4 images of points closer to p were put on top of images of points with larger distance

from p, Figures 3 and 4 can be interpreted as top-views of thus deformed cones. Figure 5 shows

a side view of the three-dimensional form corresponding to Figure 3. One can use the present

method to deform other forms as well. Suppose that half of a sphere is defined on S by

specifying a height coordinate for every point x in accordance with x3= (r2-b2)(1/2). Then, Figure

6 shows the organic form resulting from the deformation of the upper half of the sphere with

AH(x) and that corresponds to Figure 3.

Figure 5. Side view of the cone–based organic form corresponding to Figure 3.



Figure 6. Side view of the sphere–based organic form corresponding to Figure 3.

3.2 Direct three dimensional renderings of n-dimensional points

The previous subsection took as its point of departure the AH(x) function based on the two-

dimensional heart transform H(x). It is possible to work more directly in three dimensions by

taking the three-dimensional transform H(x) as a starting point. In three dimensions, H(x)

operates on a subset S of a three-dimensional space, and it maps S on another subset of the

same space. The subset S itself does not have to be three-dimensional. Because of constraints

in terms of computation time, we work with two-dimensional boundaries of three-dimensional

objects instead of with the entire objects. As an instance, consider a spherical surface with

center (300, 300, 300), and with radius 300. Suppose that p coincides with the center of the

sphere. Then, the transform of the surface is shown in Figure 7.



Figure 7. Three dimensional heart transform operating on a sphere and with p=(300,300,300)

There are different ways in which three-dimensional generalizations of AH(x) can be defined.

We differentiate between three possibilities:

a. According to the first possibility, the surface in three dimensions obtained by a three-

dimensional H(x) is cut in horizontal slices, and each slice is transformed by the two-

dimensional transform AH(x). This method is a variation of the one that resulted in Figures 5

and 6; instead of taking a cone or a sphere as a point of departure, the method starts with a

form that resulted from an application of a three-dimensional H(x). For this procedure, Figure

7 leads to the form that is shown in Figure 8.

b. The second possibility is an intermediate one. H(x) is used to define a three-dimensional

form, then it is cut in horizontal slices, but AH(x) is modified so that some of its parameters

refer to three-dimensional properties. For instance, the distance in the numerator of the



Figures 8. Variation of three dimensional AH(x) for u=(-1,-1,-1,-1,-1,-1,-1,-1)

parameter h can be made to refer to the three-dimensional distance of a point to p instead of to

the two-dimensional distance of a point to the projection of p on the horizontal slice. Figure 9

shows an instance of a resulting form. For the sake of illustration, we put q=1.5 (the value of

this parameter is 2 in all other Figures).

c. Third, three-dimensionality can be exploited more fully to obtain a much larger family of

forms. For every vector v=(v1,…vn), a fully three-dimensional AH(x) can be defined as the

result of n three-step iterations. Suppose that after the k-1-th step, xk-1 was obtained. Then,

1.  H(xk-1) is computed



2. Subsequently, the resulting point is subject to a three-dimensional affine transform

with vk as a parameter. One instance is as follows. First,  a coordinate plane going through xk-1

is selected, and xk-1 is transformed in x’k-1  in this plane by a two-dimensional rotation (with

rotation center the projection of p on this plane and with an angle �=vk (�+�.h.f)) in

accordance with the algorithm of section 2. Then, another coordinate plane going through  x’k-

1 is chosen, and again x’k-1 is subject to a rotation around the projection of p on this plane and

with an angle �=vk (�+�.h.f). We omit scaling, but the coordinate that remained constant in

the latter transformation can be given the value of any of the coordinates before this

transformation. An instance of a resulting figure (but this time for six dimensions) is shown in

Figure 10.

Figure 9. Variation of three dimensional AH(x) for u=(-1,-1,-1,-1,-1,-1,-1,-1)



Figure 10. Variation c of three dimensional AH(x) for u=(-1,-1,-1,-1,-1,-1)

4. Intuition, problem solving and the heart transform

Points of a high-dimensional space can be mapped on forms. Consequently, sets of points can

be mapped on sets of forms. Suppose that, for instance in the context of a neural network

training context, a set of examples is given that belongs to a class. Such examples can be

interpreted as points of a high-dimensional space. Then, the form consisting of the union of

the individual forms corresponding to the examples can be constructed. Suppose that the

forms of the examples are constructed in two dimensions. Since the latter forms tend to

overlap each other, one can add a third dimension, or use color codes to depict places where

overlap is present. Here, we only illustrate the second option. Further, in case classes consist



of large numbers of instances, one can suffice with the contours of forms instead of using

entirely filled forms. Consider an 8-parity problem. Such a problem classifies a binary 8-

dimensional input-

Figure 11. Set of even-parity items for an 8-dimensional input space

space (with components –1 and +1) in two classes [15]. Figure 11 shows the form

corresponding to the entire class of training items with even parity (the entire form was rotated

over 	/4). Figure 12 shows the set of all training items for a linear problem (more specifically,

all binary 8-dimensional items with at most three components equal to +1 were included in the

set that is depicted).



Figure 12. Set of items with sum of +1-components strictly less than four

Figures 11 and 12 illustrate that sets corresponding to classes with demarcations

corresponding to benchmark problems lead to aesthetically attractive forms. A class with

randomly sampled elements does not show this property. This opens the possibility that, for a

suitable mapping, aesthetic criteria can be used to:

(i) identify classes with ‘nice’ demarcation, even if the algorithmic basis of the demarcation is

not known. Figures 11-12 illustrate that classes of both linear and (even very) non-linear

algorithmic definition correspond to representations of visual elegancy

(ii) complete a class of examples. Suppose, for instance, that a subset of even parity items is



given. Then, by looking at the effect on the visual representation of including other items, it

can be decided if the original set is enlarged with the other items or not.

We notice that properties (i) and (ii) are beyond what is possible in neural network or related

contexts. Pattern recognition is very well possible by such methods, but only if a large number

of instances is given on the beforehand. Here, interesting classes suggest themselves even

before any training with stimuli coming from an outside world. This is another way in which

the present approach reminds one of Penrose’s (neo)platonic  view [13]. Further, the

symmetries at the basis of the perception of beauty in the present type of visualizations are not

easily defined (except for the mirror symmetry in Figure 11). It may be pretty hard (or even

impossible) to write an algorithm that is able to identify all symmetries at the basis of the

experience of beauty for the present type of forms. This non-algorithmic feature figures

prominently in Penrose’s theory. More illustrations, and a more elaborate argumentation of

this point can be found in [15].

5. Conclusion

The present approach to generative design is complementary to the well known genetic

generative design approach of Soddu [15]. The latter works with smallest elements that are

assembled into an aesthetically attractive whole. Here, use is made of a movement that can be

described on an intuitive level as a change comparable to a Fourrier transform. The parameters

of the present class of forms refer to the whole of the forms, not to localizable small elements.

Nevertheless, such parameters can be included in genetic evolution schema’s. Much work

remains to be done. We mention:

-A more solid mathematical study and justification of the choice of AH(x) and the study of its

variations

-Figure 10 was included because, when seen from an appropriate perspective, it reminds of a

chair; the extension and use of the present class of forms has to be investigated

-Steps toward concrete links to architecture have to be made; the technology to realize organic

constructs in practice has to be linked to the present type of forms

-The point made on intuition in section 4 is philosophically intriguing; it should be tested in

terms of empirical aesthetics if humans are able to demarcate on an aesthetic basis classes that

they cannot determine on an algorithmic basis
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