
Generative Art 2002

Computation-Universal Voxel Automata
as Material for Generative Design Education

Dr T. Fischer, MEd, PhD.

School of Design, The Hong Kong Polytechnic University.
e-mail: sdtom@polyu.edu.hk

Abstract

This paper is a report on the educational application of a voxel automata system for massively
parallel execution of computation-universal cellular units in the generative design field. The
software, designed and co-developed by the author to enable developmental strategies in
generative design - for example with respect to 3D design generation, semantic self-
evaluation and self-replication - was applied in teaching at the School of Design at The Hong
Kong Polytechnic University to achieve two goals: to teach programming as part of the
School’s Interactive Systems Design stream and to teach generative concepts at a theoretical,
yet hands-on and highly intensive level. An introduction to the software, its development and
its functions as well as a discussion of the teaching/learning experience is given, highlighting
design educational aspects and student design work. The paper concludes with an analysis of
how student approaches to generative concepts have been affected by the tool and how ideas
and feedback from students have supported the ongoing development of the voxel automata
system and its documentation.

1. Generative Design as Interactive Systems Design

As part of the Hong Kong Polytechnic University School of Design’s initiative in Interactive
Systems Design, its 2nd year BA (Hons) design students have the opportunity to participate in
a four-week project on Generative Design in the form of a profession-specific subject. These
subjects, within the interdisciplinary BA (Hons) programme, are primarily intended to
provide skill-based, technical training to complement the programme’s cross-disciplinary,
experience- and communication-focused elements. The teaching subject at issue (led by the
author) provides skill-based training in basic programming techniques within the framework
of a general introduction to Generative Design. This framework is used as an explorative
context for programming experimentation. Together with the School’s initiatives in the areas
of design learning by means of digital tools (see for instance [6]) and design learning about
digital tools, the Generative Design subject represents an example of the School’s interest in
communicating strategies of designing (through) digital design tools (see [7]). In this context,
students are given the opportunity to study not only the application of design tools and
methods but also the development of their own design tools and methods, understanding
design as toolmaking (see [2]). Students are encouraged to consider computers not only as a
subject of design, but also as means and material for design. Embracing skill-based technical
training and conceptual generative design exploration, the teaching rationale of this subject is
a strongly constructivist one, capitalising on student initiative, individual interest and prior

 10. 1

Generative Art 2002

knowledge. The implicit aim of “generative” processes of comprehension was discussed in
the context of Generative Learning theory [18] in [9].

The Generative Design subject described above has been taught twice so far in fall of 2001
and again in fall of 2002, and each time it was attended by four students. After focusing on
techniques of Java 2D graphics generation in fall of 2001, the class discussed here was
designed to allow for more spatial experimentation, using an easier and quicker-to-learn
programming technology. This was achieved by applying the voxel automata system
Zellkalkül, of which a detailed technical account is given in the following section.

2. Voxel Automata for Digital Morphogenesis

Originally developed as a framework for experimentation in digital morphogenesis research
(see [7]), Zellkalkül is a stand-alone Java application with a graphical user interface to a
boundless 3D voxel automata system. The system is based on a Cartesian coordinate system
to address close-packed voxels, which can be displayed either as spheres or as rhombic
dodecahedra (compare [17], p. 544 ff.).

Figure 1: Zellkalkül user interface showing an example program/form

Zellkalkül’s concept is based on principles of cellular automata and artificial life The three
main differences between classic Cellular Automata systems and Zellkalkül are:

� Zellkalkül is three-dimensional and every cell has 12 neighbours.

 10. 2

Generative Art 2002

� Its coordinate system is a boundless “universe” rather than a closed torus topology.

� Different cells in Zellkalkül can be governed by different behavioural patterns (”non-
uniform automata”).

The behaviour of cells in Zellkalkül is not limited by simple rules. It can be of any degree of
complexity since Zellkalkül’s cells are freely programmable. This environment allows textual
programming of cells to generate cellular manifestations of formal and/or behavioural
character. Structures generated in the system can be picked and moved, rotated and zoomed in
and out using the mouse and the cell’s transparency can be globally controlled in ten
gradients from highly transparent to opaque.

Voxels can have one of a number of identities (IDs), which are represented as coloured
squares at the bottom of the graphical user interface shown in figure 1. Programming code can
be associated with each ID. This code will define the behaviour of all cells that are instances
of the respective ID during execution of the automata system. This allows the massively
parallel execution of different code scripts in one automata system.

The programming language used is an extended version of ECMAScript [15], of which
JavaScript and Flash ActionScript are descendants (Jean-Marc Lugrin's free FESI interpreter
[14] was used). The language was extended by adding problem-centred elements for cellular
morphogenesis including functions to create, inspect, manipulate and delete cells, as well as
by provisions for intercellular communication and for parallel execution control. The
functions allow basic operations (“create cell”, “delete cell”) as well as operations based on
natural cellular paradigms (“split”, “die”). These language extensions, the voxel coordinate
system and programming examples are covered in detail in a system handbook [8]. Both
procedural and object-oriented programming are supported by the scripting language. The
system is designed to support endless execution loops, like those that occur life-game type
cellular automata. During each execution cycle, each cell can execute either its entire code or
a defined (special-character-delimited) segment of it. The runtime model is also borrowed
from life-game-type cellular automata systems. It does not terminate after all cells have
executed their rule-based behaviours but keeps on looping indefinitely. However, cells can be
explicitly excluded from and included in execution cycles with code respective functions.
Once all cells are excluded from execution, a cellular program terminates.

As a tool for 3D shape and behaviour generation, Zellkalkül has similarities to, but also
significant differences from other voxel software systems. Kai Strehlke has developed an
online collaborative 3D modelling and shape morphing system named “xWorlds” and applied
it in design teaching for example at the School of Design at The Hong Kong Polytechnic
University (see [16]). XWorlds’ shape development is based on direct user manipulation and
morphing techniques, and its parametric voxel-topology is based on cubic close-packing. In
contrast to the three-dimensional educational (cubic) voxel modelling system DDDoolz [1]
for example, Zellkalkül does not allow for manual (cursor-based) shape assembly. All form is
generated by means of (multi)cellular programming. Compared to the three-dimensional
environment for self-reproducing programmes described by Ebner [5], Zellkalkül is
topologically based on close-packed spheres, each of which has twelve neighbours and it
allows for higher-level cellular programming.

The program has undergone a number of different stages during its 10 months of (ongoing)
development. It was inspired by observations made during the implementation and

 10. 3

Generative Art 2002

application of a haptic programming environment (this aspect of the project background was
discussed in [7]). But being also inspired by classic cellular automata systems, it bagan with a
two-dimensional grid with all the topological features of a Game of Life system (upper left
side in figure 2). At this stage, manual tissue composition was possible. Very soon, however,
the limitations of a two-dimensional system became too dominant and a mock-up of a 3D
alternative was created for discussion (upper right side in figure 2). Note that at this and all
later stages shown in figure 2, a 3D-cursor and cursor-control buttons for manual cell
assembly has still been envisioned. This approach was later abandoned in favour of purely
code-driven manipulation. Following a suggestion by Prof. John Frazer, the cubical voxel
arrangement was abandoned in favour of rhombic dodecahedra. Based on extensive previous
experiments and applications with this topology (see for example [10], pp. 84 ff. and 98 ff.),
Prof. Frazer’s advice has helped in avoiding the problem of having two types of neighbouring
relationships and distances between cubic voxels (side neighbours and point neighbours). It
was also key to the author’s (and successively the students’) understanding of how cells in
such a configuration could be easily addressed (see further below). The rhombic
dodecahedron is a comparatively “natural” form and was identified and described as a
common natural cell geometry as early as in 1815 (see [12]).

Figure 2: Evolution in Zellkalkül software development

The software represents an attempt to allow modelling of groups or colonies of parallel
objects or particles (cells, atoms, molecules, planets, insects etc.) and nested systems of such
groups in a very generic (application non-specific) manner. It is designed to potentially allow
the simulation of any process of energy and material distribution/interaction in time and

 10. 4

Generative Art 2002

space, based on temporal and spatial relationships as well as on internal (programmed) logic.
In previous research applications, Zellkalkül has been used to simulate cellular development
in biological organisms based on temporal and spatial cellular identity (see [7], pp. 118-121).
In other research contexts it is currently being used to investigate the possibilities of applying
natural principles of morphogenesis to man-made design and construction. Zellkalkül’s
development is ongoing, and planned future extensions include networked computation
support by server clusters and parametric control of cell geometries to enhance the degree of
freedom in form generation. It is also planned to make use of these new features in future
educational design applications.

3. Generative Design Learning

As mentioned above, this subject preceded a previous four-week Generative Design subject
taught in 2001 (also led by the author) that made use of Java2D technology to generate
different types of line drawings (variations on replacement systems/grammars, space-filling
curves etc.). The 2001 learning and teaching experience suggested the use of an easier coding
technology and more interesting design representations than two-dimensional line drawings in
the 2002 follow-up subject. This led to the decision to apply the research tool Zellkalkül with
its 3D view and ECMAScript coding technology to Generative Design teaching. This has,
however, necessitated the introduction of a number of new, abstract and harder-to-understand
concepts to the taught subject, such as massively parallel programming, morphogenesis based
on cellular development and a variation of the Cartesian coordinate system that is neither
commonly known nor easily understood. The following example illustrates how such abstract
new subject matters were introduced in quick succession using concrete examples and
tangible teaching materials.

Figure 3: Physical models as learning aids: Ball bearing

Close-packed rhombic dodecahedra are arranged like spheres in hexagonal close packing (e.g.
in face-centred cubic packing). Thompson gives an account on the relationship between
spherical and rhombo-dodecahedral close packing on p. 552 in [17]. Figure 3 shows one of a

 10. 5

Generative Art 2002

number of ball bearing boards used at the School of Design’s Design Technology Research
Centre (DTRC) in close-packing related projects. The boards were used in this teaching
subject to allow hands-on close packing experiments. The experiments (see image above)
show that, unlike cubic close packing, hexagonal close packing places every layer’s elements
above the gaps between the elements on the layer beneath it. Elements are hence not stacked
in straight (cubic) lines in all three dimensions which suggests at first glance that they could
not be addressed in a straight-forward way using natural numbers as x, y and z coordinates.

The rapid prototype model shown twice in figure 4 (also produced by the DTRC), however,
shows, that such a mode of addressing is still possible. The model on the left shows a sphere
with its twelve hexagonally close-packed neighbours. Rotating it 60° to the orientation shown
on the right reveals that this arrangement has strong cubic characteristics. This rotation is the
single difference between hexagonal and face-centred cubic close packing. After the rotation,
on each of the three horizontal layers, all elements are arranged along straight lines in both
dimensions on the horizontal plane. The deviation from cubic close packing is an offset that
applies to all odd-numbered layers, which also has the result that the vertical distance
between two layers is not the diameter of one element but the half of the square root of one
element. This illustrates how each element can be addressed using natural numbers as x, y and
z coordinates in a Cartesian coordinate system if the described offsets are taken into account
when representing the structure. Zellkalkül uses a simple Cartesian coordinate system and
addresses based on natural numbers in exactly this way. Though this possibility might not be
immediately obvious, it could be explained and demonstrated to the students within a matter
of minutes using these tangible models.

Figure 4: Physical models as learning aids: Rapid-prototype

From the author’s and the students’ perspective, it would have been highly desirable to be
able to output structures generated in Zellkalkül on rapid prototyping machines.
Unfortunately, while paying great attention to 3D data import, the Java(3D) development
community has not yet provided a self-contained free solution for outputting Java3D data
(Zellkalkül’s internal data format) as common 3D data formats such as .3ds or .stl. At this
writing, an attempt to develop this possibility for Zellkalkül is being undertaken but could not
be offered to the students of this subject.

 10. 6

Generative Art 2002

As stated above, a code interpreter is associated with each of the spherical or rhombo-
dodecahedral elements. Since the cell scripting language used is closely related to popular
Web scripting languages such as JavaScript, JScript and Flash ActionScript, students were
enabled to reapply their learned programming experience in later interactive Web design
projects. To facilitate online code sharing and discussion, a “project hub” website was put
online containing links to the Zellkalkül Handbook [8], Email links to all class participants
and links to all project/data sharing folders of all class participants. These project and data
sharing folders were set up on a departmental data storage and exchange server cluster for
design teaching to which all students and staff have access (see [3]). The project hub website
itself was used as a demonstration of how learned scripting knowledge could be reapplied in
on-line authoring. It was based on JavaScript-based dynamic HTML, generated by code
elements previously discussed in this subject. An analysis of the website’s source code was
used to re-iterate previously acquired programming knowledge.

Figure 5: Zellkalkül coding exercises at the School of Design

In order to engage students in programming learning at a very high degree of activity and also
to allow them to quickly achieve confidence in software development terminology, students
were asked to research, prepare and deliver short presentations on programming language
elements and to discuss related examples (variables and arrays, functions, objects, different
loop types, conditional branching, etc.). Consequently, individual students became “experts”
in particular code constructs and data structures, which was then used to build up a mutual
programming support system amongst the group of students.

 10. 7

Generative Art 2002

Since this subject focused on skill (programming) learning rather than on the production of
design output of some kind, emphasis was put on the student’s learning and thinking
processes, their interaction and mutual support, which had to be closely observed and
analysed. In order to allow such observation, the School of Design makes wide use of the
“lablog” concept. Barbara Dass and John Frazer coined the term “lablog” in 1991. It refers to
a combination of a laboratory notebook and a ship’s logbook of a journey of discovery (see
[4], p. 2) and describes a very free format for creating learning process/progress protocols. At
the School of Design, lablogs are most frequently produced in form of A5, A4 or A3-sized
notebooks or bound paper collections containing notes in various formats such as text,
images, drawings, polaroid pictures, origami experiments, news clippings and so forth. These
documents are typically reviewed together with students in tutorials during a subject and
collected and analysed at the end of a subject for assessment purposes. Figure 6 shows an
example page of one of the lablogs produced in this Generative Design subject: a reflection
on how loop structures and trigonometric functions can be used to create elliptical and line
structures with parametric variations based on the day (numerical date) of program execution.

Figure 6: “Lablog” showing programming experimentation

In this subject, generative systems were represented as verbally described ideas, programming
code, written text, sketches, virtual models of different types, screen shots and collaged lablog
reflections. This multi-modal representation of concepts in this subject has led to a very
intense learning experience.

Surprisingly, though the software used allows the generation of any kind of cellular pattern
and though natural tissues typically consist of solidly close-packed cells, the students in this
subject showed great interest in very loose, line and surface-type configurations. One reason

 10. 8

Generative Art 2002

for this might be that, despite adjustable cell transparency, it is rather difficult to visually
understand the inner structure of solid configurations, which is made more difficult by the
large number of faces at different angles in different layers when viewing cells as rhombic
dodecahedra. By generating loose and rather sparse structures, students achieved
configurations that were very easily comprehensible on the two-dimensional screen by
moving and rotating them. Accordingly, students developed a strong interest in line, curve
and circle drawing algorithms rather than in control structures that are more suitable to fill
space solidly. Before this subject the students had little or no previous programming
experience. Because of this lack of preconception, it was expected that they would
unquestioningly embrace the massively parallel programming paradigm. Nevertheless, they
tended strongly towards structures developing from code in one single cell and terminating
this program after the first execution cycle instead of programming multiple cells using
intercellular code manipulation and communication or repeating execution cycles. One reason
for this might be the simplicity and sequential linearity of most programming examples in the
Zellkalkül handbook at that time. The software, many of its code functions and the handbook
were further developed over the course of the subject to reflect emerging problems and
ongoing discussions. The mentioned tendency of the students led to an emphasis on
multicellular programming and runtime coordination in successive additions to the handbook,
and to the incorporation of more code functions for runtime management. However, this did
not change the students’ bias towards procedural coding executed as single-cell programmes.

4. Conclusion

The teaching subject discussed above demonstrates a successful application of research tools
to learning and teaching. It succeeded not only in making efficient multiple use of a software
development project but also to make students aware of some present-day design research
approaches and tools. Up to this point, experimentation in Zellkalkül has tended towards
abstract and rather sketchy results. Since the discussed subject was more process-centred than
product centred, this was not seen as a problem and it has helped to avoid overly iconic “3D
drawing”. Understanding the software and in particular its coordinate system poses some
challenges for learning and teaching especially in a very short subject. But using tangible
learning materials and encouraging mutual student support have proven to be very effective in
this context. In general, this subject and its outcomes have been regarded as more interesting,
and its learning has been experienced as more effective and worthwhile than in the previous
Generative Design subject in 2001 using Java2D. In this subject, mainly due to time
constraints, only a small fraction of the versatility and power of Zellkalkül was made use of
by the students. It became obvious that this research tool could serve as a learning
environment for much longer and more intense teaching subjects and experiments in the
Generative Design field. It is planned to expose students to Zellkalkül for longer durations in
the future. The use of the programme by users without previous programming knowledge,
who can take a fresh view at it, is expected to continue to drive the further development of
this research tool, its applications and its documentation.

5. Acknowledgements

I gratefully acknowledge the valuable support from my colleagues at the School of Design at
The Hong Kong Polytechnic University and at the Spatial Information Architecture

 10. 9

Generative Art 2002

Laboratory at the Royal Melbourne Institute of Technology University, in particular Prof.
John Frazer, Prof. Mark Burry and Timothy Jachna whose feedback has been vital to this
teaching project. I also acknowledge the excellent teaching support by Nicole Schadewitz and
the superb software development support by Torben Fischer, without which the discussed
software could not have been implemented. Special thanks also to the 2002 students of the
ISD PSS sd3900: Huang Ying Grace, Lau Mei Ki Miki, Wong Kwan Fong Kim and Choi
Wai Bun Gary. This project is supported by Departmental General Research Funds at the
School of Design at The Hong Kong Polytechnic University (Project Code A-PB84).

5. References

[1] Achten, H.H., Vries, B. de and Jessurun, J. (2000). DDDoolz – A Virtual Reality
Sketchtool for Early Design. In: Tan, B.K., Tan, M. and Wong, Y.C. (eds.), CAADRIA
2000: Proceedings of the Fifth Conference on Computer Aided Architectural Design
Research in Asia, National University of Singapore, Singapore, pp. 451-460.

[2] Ceccato, C. (1999): Microgenesis. The Architect as Toolmaker: Computer-Based
Generative Design tools and Methods. In: Soddu, Celestino (ed.): The Proceedings of the
First International Generative Art Conference. Generative Design Lab at DiAP,
Politechnico di Milano University.

[3] Ceccato, C., Fischer, T., Li, C.M. and Frazer, J. (2002): A Large-Scale Computing
Infrastructure for Design Education. In: Koszewski, K. and Wrona, S. (eds.): Design e-
ducation. Connecting the Real and the Virtual. Proceedings of the 20th eCAADe
Conference. Faculty of Architecture, Warsaw University of Technology, Warsaw 2002,
pp. 282-289.

[4] Dass, B and Frazer, J. H. (1991): DES101 Design Thinking. Course Handbook.
Department of Design in Industry, Faculty of Art and Design, University of Ulster.

[5] Ebner, M. (2001): A Three-Dimensional Environment for Self-Reproducing Programs.
In: Advances in Artificial Life: 6th European Conference, ECAL 2001, Prague, Czech
Republic, Berlin and New York: Springer, pp. 306-315.

[6] Falk, L., Ceccato, C., Hu, C., Wong, P., and Fischer, T. (2000): Towards a Networked
Education in Design. A First Manifestation through the “Virtual Design Company”
Studio, In: Tan, B.K., Tan, M. and Wong, Y.C. (eds.), CAADRIA 2000: Proceedings of
the Fifth Conference on Computer Aided Architectural Design Research in Asia,
National University of Singapore, Singapore, pp. 157 - 167.

[7] Fischer, T., Fischer, T. and Cristiano C. (2002): Distributed Agents for Morphologic and
Behavioral Expression in Cellular Design Systems. In: Proctor, George (ed.): Thresholds.
Proceedings of the 2002 ACADIA Conference, College of Environmental Design,
California State Polytechnic University, Pomona, Loa Angeles, 2002, pp. 113-123.

[8] Fischer, T. (2002): Zellkalkül. User’s Handbook. Unpublished.

[9] Fischer, T. and Herr, C. M. (2001): Teaching Generative Design. In: Soddu, C. (ed.) The
Proceedings of the Fourth International Conference on Generative Art 2001. Milan,
Italy: Generative Design Lab, DiAP, Politechnico di Milano University.

 10. 10

Generative Art 2002

[10] Frazer J. H. (1995). An Evolutionary Architecture. London: The Architectural
Association.

[11] Gerhart, J. and Kirschner M. (1997). Cells, Embryos, and Evolution. Toward a Cellular
and Developmental Understanding of Phenotypic Variation and Evolutionary
Adaptability. Malden, MA, Blackwell Science.

[12] Kieser, D. G. (1815). Phytotomie, oder Grundzüge der Anatomie der Pflanzen. Jena,
Cröcker.

[13] Kolarevic, B. (2000). Digital Morphogenesis and Computational Architectures,
SIGraDi’2000 - Construindo (n)o espacio digital (constructing the digital Space), 4th
SIGRADI Conference Proceedings, Rio de Janeiro (Brazil) 25-28 September 2000, pp.
98-103.

[14] Lugrin, J. M. (2000): FESI ECMAScript Interpreter v1.1.5. URL: http://home.worldcom.
ch/˜jmlugrin/fesi/, 2000. On 05-Nov-2002.

[15] McComb, G. (1998). ECMAScript Language Specification. Lincoln, iUniverse.

[16] Strehlke, K. (1999): xWORLDS. The implementation of a three-dimensional
collaborative sketch tool within the context of a third year design course. In: Soddu,
Celestino (ed.): The Proceedings of the First International Generative Art Conference.
Generative Design Lab at DiAP, Politechnico di Milano University.

[17] Thompson, D. W. (1992). On Growth and Form. The Complete Revised Edition. Dover
Publications, New York.

[18] Wittrock, M. C. (1990). Generative Processes of Comprehension. Educational
Psychologist, 24(4), pp. 345-376.

 10. 11

