
Generative Art 2002

A generative design system based on evolutionary and
mathematical functions†

Liu Xiyu

Design Technology Research Centre, School of Design
The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR

Email: sdxyliu@polyu.edu.hk
and

School of Information and Management
Shandong Normal University, Jinan, Shandong 250014, P.R. China

Email: xyliu@sdnu.edu.cn

John Hamilton Frazer
Swire Chair Professor,

Director of the Design Technology Research Centre
School of Design

The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
Email: John.Frazer@polyu.edu.hk

Tang Ming Xi

Design Technology Research Centre, School of Design
The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR

Email: sdtang@polyu.edu.hk

Abstract

Previous work by Professor John Frazer on Evolutionary Architecture provides a basis for the
development of a system evolving architectural envelopes in a generic and abstract manner.
Recent research by the authors has focused on the implementation of a virtual environment
for the automatic generation and exploration of complex forms and architectural envelopes
based on solid modelling techniques and the integration of evolutionary algorithms, enhanced
computational and mathematical models. Abstract data types are introduced for genotypes in
a genetic algorithm order to develop complex models using generative and evolutionary
computing techniques. Multi-objective optimisation techniques are employed for defining the
fitness function in the evaluation process.

1. Introduction

A related paper [11] at this conference reviewed and described the theoretical foundations of
the research led by Professor John Frazer in the past in the UK and in particular more recently
in Hong Kong, on generative and evolutionary architecture design. In this paper, we focus on
the technological implications and implementation techniques of a system for the design and
visualisation of both abstractive 3D forms and domain specific architectural envelopes based

†

†Research sponsored by the Research Fellow Matching Fund Scheme 2001 (No. G.YY.34) of the Hong Kong Polytechnic
University, and the Governmental Young Scientist Award Foundation of Shandong, P.R. China.
 29. 1

mailto:sdxyliu@polyu.edu.hk
mailto:xyliu@sdnu.edu.cn
mailto:John.Frazer@polyu.edu.hk
mailto:sdtang@polyu.edu.hk

Generative Art 2002

on an integration of three main computational techniques. In this paper we discuss these
techniques and present (1) computational tools for creating and exploring alternative complex
forms, (2) stimulating the process of generating abstract but novel design concepts using
generative design techniques, (3) linear and non-linear algorithms for modifying abstract
forms to obtain complex forms through spatial or conceptual transformations. The facilities
for providing these functions are integrated in a new system based on enhanced 3D solid
modelling techniques with complex mathematical functions. The system kernel is compatible
with object-oriented technology and 3D solid modelling and surface modelling standards. The
system is demonstrated in an evolutionary architecture paradigm with a focus on how to
generate visionary and creative forms. The complex forms generated and visualised using the
developed system are promising. Our system has been implemented based on an integration
of ACIS 3D solid modelling kernel and MatLab with a C++ graphical user interface. The
integration of generative and evolutionary computation techniques with 3D solid modelling
techniques provided a solid foundation for us to develop more domain specific applications.
The system is fully compatible with commercial CAAD tools and systems, as well as rapid
prototype facilities. Theoretical concepts of sophisticated surfaces and envelopes based on a
library of basic building blocks of complex form have been built using evolutionary
techniques and partial ordering theory of non-linear analysis.

A new type of genetic algorithm is also studied for our generative design system. We
extended the classical powerful techniques from modern non-linear analysis theory to
selection and optimisation of GA. These techniques included topological spaces and partial
ordering. A Zorn Lemma type of iterative procedure is introduced. This attempt partially
overcame the difficulty in implementing effective automatic selection in the application of
genetic algorithms.

2. Mathematical models and 3D shapes

Nowadays, one of the most significant ways to understand a mathematical model is through
computer visualization. However, due to the fully non-linear nature of many functions, it is
not an easy task to develop accurate shapes for general non-linear functions. One way to solve
this problem is the use of finite element analysis methods. There are several approximate
techniques for non-linear functions, the simplest of which is a planar piece. More accurate
techniques included NURBs approximation, polynomials approximation and others. It should
be noted that it is always difficult to find a good balance between a better approximation and
the acceptable computing time.

With the help of a solid modelling kernel with libraries of many sound geometric
transformation and reasoning methods, we developed 3D solid model visualisations for
complex functions in this project. A prototype system has been implemented based on an
integration of ACIS 3D solid modelling kernel and MatLab with a C++ graphical user
interface. Our basic geometrical objects for approximation are NURBs surfaced units. Our
system is fully compatible with any commercial CAAD tools and systems, as well as rapid
prototype facilities. A large number of object-oriented components of sophisticated surfaces
and envelopes have been built. In particular, complex forms are classified as linear, quadratic,
trigonometric function, exponential functions, root functions compounded functions, rotations,
sphere and cylinder co-ordinates, implicit function. Computational mechanisms have also
been developed with which these basic data structures and components can be visualised,

 29. 2

Generative Art 2002

combined or split to allow new data structures or new forms to be derived using generative
techniques.

3. Simulating architectural envelopes

In this paper, our main concern is to generate architectural envelopes with their outlines
determined by mathematical functions and evolutions. We use a multi-coding schema to
represent the phenotypes. That is, we use continuous schemas with continuous functions, and
discrete schemas with discrete functions.

It is well known that one of the most important and difficult problems in evolutionary design
applications is the appropriate definition of the fitness function. It is this function that
determines the selection and optimisation of the evolution and the final solution. In the
literature, many authors used artificial selection techniques, which indeed helped to solve part
of this problem. However, in a design application, exploration with artificial selection and
optimisation with natural selection need to be combined in order to support the process of
design from under-constrained design space of abstract concepts to a highly constrained space
with well-defined variables and evaluation criteria. A wide range of design problems can be
supported using generative and evolutionary techniques

To solve this problem, we adopted a multi-objective fitness function for optimisation, and a
partial ordering technique derived from non-linear analysis to represent the complicated
relationships among the candidate solutions from in populations generated during the process
of evolution.

Figure 3.1 is a diagram of the functional components of the system we have implemented.

Outline and
centre axis
generator

Tower generator Coded tower

Optimiser

Data and
tower evolver

Fig 3.1 System functional components

4. Object Library and object class definition

We used an object-oriented representation in the system implementation. There are 47 object
classes in the system object library including user interface classes. Among them, 17 classes
are modelling classes. The base modelling class is CModel. Two derived classes are
CAModel and CTower. There are three classes derived from CTower and 10 classes from
CAModel. One of the CAModel derivations is CGABase, from which some evolution classes
such as CGAModel and CANNModel are derived.

 29. 3

Generative Art 2002

Fig 4.1

Base class MFC class Dialog class GUI class Others

Application

 Class hierarchy

CClassViewer
CEcoHouse

CHouseModel
CJohnModeler
CLoftModel
CMathModel
CWireModel
CSweepShow

CSurfaceModel

CGAModel
CGAAnimation
CGARotation
CIslandAdven

ture

C
C
u
r
v
e
T
o
w
e

C
C
u
r
v
e
W
i
r
e

C
R
o
s
e
T
o
w
e
r

CPopulationTower B
ase class

CPopulation

CGABase
CTower CModel

CAModel

Fig 4.2 Class structures

The base class CModel provides interaction with the Acis 3D kernel and the basic file access.
This class has two derivations, CAModel and CTower. The CTower class is the rendering
encapsulation of the Acis APIs for the construction of 3D solid model classes. Another
derivation is CAModel. In this class, useful encapsulations of rendering functions, for
example, texture, colour, cutting etc, are integrated. Common operations such as SAT file
save and refresh are also implemented in this class. Some geometrical construction functions
are also encapsulated in this layer.

The main working classes in this project are at the next layer. The two derivation lines are
CTower and CAModel. Along the first derivation line, there are three classes. The first class
is CCurveTower. Below are the main operations for this class:

Table 4.1 Operations of class CCurveTower

double outline(double, double, double);
double outlineAxis(double, double, double);
void Create(double, double, double, int, int);
void Create(double, double, double, int, int, double*, double*);
void BuildCone(double, double, double, double, double, double);
void BuildConeTwo(double, double, double, double, double, double);
void BuildHat(double, double, double, double);
void BuildBase(double, double, double, double);

The construction of tower models is implemented in this class. The model is controlled by
two functions. One is for the outline of the tower and the other is the centre curve. Figure 4.2
illustrates two example towers constructed using this class definition.

 29. 4

Generative Art 2002

Fig 4.2 Towers created by class CcurveTower

The second class is CCurveWire. This is a class for constructing the wire-frame around the
tower. Apart from the operations similar to the previous class, a new function called the bone-
construction is provided as follows.

Table 4.2 Operations of class CCurveWire

void BuildBone(double*, double*, int, int);
void BuildBone(double, double, double, double, double, double, int, int);
void BuildBaseWire(double, double, double double);

The examples of models created using this class.

Fig 4.3 Wire frame created by the class CCurveWire

Another class is CRoseTower. The main functionality of this class is to create towers with
more than two columns. A typical example is as follows.

Fig 4.4 Five column tower and three column tower

 29. 5

Generative Art 2002

A subclass at the second layer is CAModel. There are more class derivations than the class
CTower. In fact, this class is the most important one in our system. And there are 10 derived
classes from CAModel. Most of the classes perform a specific kind of architectural or
mathematical model construction task.

Among these ten classes, CJModeler is one that focuses on mathematical modelling. Our
main approach to complex form modelling is to combine discrete functions with NURBs
surfaces. Some of the operations in this class are shown in the following table.

Table 4.3 Some operations of class CJModeler

void BuildP129SliceWire(double, double, double, double, double, int, EDGE*&);
void BuildSweepPiece(double, double, BODY*&, BODY*&);
void BuildP132WingPiece(double, double, double, double, double, double, double, int, double*);
void BuildP127Piece(double, double, double, double, double, double, double* clColor);
void BuildP121TopPiece(double, double, double, double, double, double, double, double*);
void BuildLoftPiece(int, EDGE**, BODY*& my_body);
double nonSurface(double, double, double, double, int);
void BuildP123Wire(double, double, double, double, double, double*, int nFlag);
void BuildPipeFromWire(position&, position&, EDGE*&, double, double* clColor, double xRotate = 0);
void BuildKuenPipeFromWire(position& start, position& end, EDGE*& my_edge,
 double radius, double* clColor, ENTITY*& my_body);
void BuildKuen86Wire(double radius, double v, double* clColor, int nFlag=1, int nWireFlag=0, int nPlusFlag=0);

//projective functions
double FProjective1(double x, double y, double z, int);
double FProjective2(double x, double y, double z, int);
double FProjective3(double x, double y, double z, int);
void BuildProjectiveWire(int nFlag, double radius);
void BuildCoil(..);
void BuildBone(..);
void BuildBaseWire(..);

5. Genetic algorithms and evolutionary models

Having become widely used for a broad range of optimisation problems in the last ten years,
Genetic Algorithm has been described as a "search algorithm with some of the innovative
flair of human search". Genetic Algorithms are today renowned for their ability to tackle a
huge variety of optimisation problems (including discontinuous functions), for their consistent
ability to provide excellent results and for their robustness. Natural evolution acts through
large populations, which reproduce to generate new offspring that inherit some features of
their parents (because of random crossover in the inherited chromosomes) and have some
entirely new features (because of random mutation). Natural selection (the weakest creatures
die, or at least do not reproduce as successfully as the stronger creatures) ensures that, on
average, more successful populations are produced in each new generation than less
successful ones.

Any evolutionary architectural models require architectural concepts to be described in the
form of genetic codes. Then these codes are mutated and developed by computer programs
into a series of models called populations. While models are evaluated by optimisation or
selection sub-systems, the codes of successful models are constantly picked up until a
particular stage of development process is reached.

In order to manipulate a complex model with a generative and evolutionary program it is
necessary to define the followings: a genetic code script, rules for the development of the
code, mapping of the code to a virtual model and, most importantly, the criteria for selection.

 29. 6

Generative Art 2002

The representation of phenotypes is a fundamental element of any evolutionary system. In
design applications, phenotypes represent designs, which formulate possible solutions to be
evolved by the system. Moreover, phenotype representation plays a significant role in
determining the size and complexity of the genotype. The two main 3D representation
methods are surface representation (or boundary representation) and constructive solid
geometry (CSG). The first method typically uses combinations of equations and control
points to specify shapes, while CSG combines different primitive shapes to form more
complex shapes. There is a third of the commonly used solid representation called spatial
partitioning. This is to decompose a solid into a collection of smaller, adjoining, non-
intersecting solids that are at lower primitive level than the original solid. There are a number
of variations including: cell decomposition, spatial-occupancy enumeration, octrees, and
binary space-partitioning trees.

Primarily, our model in this paper is the boundary representation model. In this representation,
architectural envelopes are represented by mathematical data of the main model geometry.
Changing the surfaces of a model is achieved through adding or subtracting mathematical
data. In accordance with the mathematical functions type data, we use a cell division model.
A cell division model is based on the structure of a living object. As in nature, the shape of a
living object is constructed from the basic genetic information in the cells and organisms. The
genotype contains information that is the basic construction unit of everything, called the
chromosome. Chromosomes form proteins and other large molecules. Chains of molecules
will form tissues and organisms to form the whole body. In a natural environment,
development begins with the chromosome, which forms the base. Then a number of smaller
cells are constructed. Large cells are resulted from joining and other operations and form a
multi-cellular structure. In a word, the cell division models simple divide the whole process of
involution into basic units and operations.

For a better description of the combination of functions, we use a jelly model as an example.
This is a derivation of the cell model. A layer called the jelly layer is added to the model to
represent a compound structure. We use this model to represent functions in various
combinations. Basically, the model has three layers, that is, the gene layer, the cell layer and
the jelly layer as shown in the next diagram.

Gene

Cell

Jelly

Jellies

Genes

 Fig 5.1 A jelly model

It is clear that the above model is like the molecular structure in biology. Jelly plays the role
of a large molecule, and is composed of cells. In a cell, there are genes and other small
molecules (jelly). The smallest unit in this chain is gene that forms the base of the three
structures.

The second model in our system is the discrete model. The basic structures in this model are
section and outline data structures. Each of these two outlines is an ordered set of double
numbers, with auxiliary data indicating steps and size. To eliminate the discontinuities caused
by the data structure, a mollifying operation is introduced.
 29. 7

Generative Art 2002

Mollifying operations act as function smoothers. They can smooth a discontinuous function
by substituting the value at one point by some average in a neighbourhood. In the one
dimensional case, a mollifying operation is a non-negative, real-valued function J C
such that

0 ()R∞∈

 (i) if | | , and () 0J x = 1x ≥

 (ii) J x∫ () 1
R

dx =

An example of a mollifying operation is the following function:

21/(1 | |) , if | | 1()
0, if | | 1

xke xJ x
x

− − <= 
≥

where

21/(1 | |)

| | 1

1 x

x

e d
k

− −

<

= ∫ x

Take 0ε > and 1() xJ x Jε ε
ε

−  =  
 

. Then the convolution

* () () ()J x J x y u y dyεε
= −∫

is the mollification of the function u(x).

Finally, the discrete model can be illustrated as follows.

Evaluation
Module

Evolution
Module

sepyton e G

Phenotypes, the towers

Slice data generator

SectionOutline

Mollifying ops

Fig 5.2 Discrete model

6. Multi-objective optimisation

In design systems, there are two main kinds of optimisation, that is, the artificial and
automatic optimisation. Within the context of evolutionary design, the first class is usually
called explorative evolution, which uses evolution as an explorer, not as an optimiser. In this
case the optimisation process is controlled by human designers and the evolutionary system is
used to help with the exploration of many possible solutions, so as to provide inspirations and
to identify the range of useful solutions.

A modified version of this explorative evolution is an automatic process guided by natural
selection defined as fitness function. By telling the computer the desired function in the form
of a set of evaluation routines, but not anything about the design itself, the user is removed

 29. 8

Generative Art 2002

from the loop and the computer can find the final solutions to design problems. Therefore,
a multi-objective optimisation function is needed in this process. Accordingly, the fitness
functions must calculate appropriate information about the individual, and then use this
information to calculate how well each individual satisfies particular criteria. In short, the
fitness functions are a map from each individual to a point in high-dimensional Euclidean
space. In this case, partial ordering is an effective method to represent relations of points. In
this section we present two definitions in spaces with and without linear structure.

Definition 6.1 Let E be a set and Σ be a subset of E×E. We will call the subset Σ a partial
ordering provided that the following properties are satisfied.

 (1) (x,x)∈E×E, where x∈E.
 (2) (x,y)∈E×E, (y,x)∈E×E imply x=y.
 (3) (x,y)∈E×E, (y,z)∈E×E imply (x,z)∈E×E.

Definition 6.2 Let E be a linear space and P is a nonempty convex set. We will call the set P a
cone if the following properties are satisfied.

(1) If t is a nonnegative number and x∈P, then tx∈P.
(2) If x∈P, -x∈P, then x=0.

Cone is an important tool in the study of non-linear problems and positive solutions of
differential equations. It is one the three main methodologies in modern non-linear analysis.
In [7] the reader can find detailed theory of cone and applications. In general, most of the
partial orderings in applications in analysis are derived from cones.

Let P be a cone. Define

x y x y P≤ ⇔ − ∈

Then it is easy to show that the above definition is a partial ordering. In partial ordering
spaces, it is often convenient to define a metric. Then we can get a measurable property from
a descriptive concept. We call such a measure the Hilbert projective distance. Let P be a cone,
and E a partial ordering linear space, x, y∈E. If there are positive numbers t and s such that

, /x ty P y x s P− ∈ − ∈

Then from the definition of partial ordering we have

ty x sy≤ ≤

Now we define

inf{ 0 : }xM x y
y

λ λ
 

= > ≤ 
  ,

sup{ 0 : }xm y
y

µ µ
  x= > ≤ 
 

Definition 6.3 We call the following function the Hilbert projective distance of the two points
x, y:

(,) ln lnx xx y M m
y y

ρ
   

= −   
   

Similarly we call the next function be the Thompson distance of x, y:

 29. 9

Generative Art 2002

(,) ln max ,x yd x y M M
y x

     =           

Examples Now we consider a simple example. Let E be the linear space of n-dimensional
vectors, and let P be the cone of points with non-negative elements, i.e., x=(x1,x2,...,xn) if and
only if x1,x2,...,xn are non-negative. Let x=(x1,x2,...,xn) and y=(y1,y2,...,yn) be two points with
x1,x2,...,xn >0 and y1,y2,...,yn >0. Then it is easy to compute that

min , maxi i

i i
i i

x xx xm M
y y y

   
= =   

    y

Thus we get the two new distances as follows.

,
(,) ln max i i

i j
j i

x yx y
x y

ρ
  =  
   ,

,
(,) ln max , ji

i j
i j

yxd x y
y x

   =       

 For general purposes, we give another definition of metric induced by a partial ordering.

Definition 6.4 We call the following function F-projective distance of the two points x, y:

(,) , , ,F
x y x yx y F M M m m
y x y x

ρ
       =        

       

where F(a,b,c,d) is a function.

Now we describe a multi-objective optimisation scheme based on partial ordering technique.
In design problems, we always use genotypes and phenotypes to denote two forms of a design
solution. Genotypes will construct a space called genospace. We say one design is better than
another design by saying that the phenotype of one design solution is better in some aspects
than the second design solution. These better characteristics will correspond to some
comparison principles of their genotypes. Of cause, there will be a number of such principles
and they form a principle set. We will call the principle set compatible if we can say
definitely one is better than the other. That is, if there are two genotypes x and y, and x is
better than y while y is better than x, then x is equal to y. We will always consider compatible
principle set.

Definition 6.5 Let the genospace be G and denote the comparison principle set by . Define
a partial ordering in G by principles in . That is,

P
P x y≤ if and only if y is better than x.

Because the principle set is compatible, we see that the relation x y≤ is a partial ordering.
Moreover, when the genospace is linear, we can obtain a cone by the principle set. This is
possible when the genotypes are real vectors and they form a continuous region. Now we
recall a famous lemma in set theory, the Zorn’s Lemma. It tells that in a partial ordering space,
if every totally ordering subset has an upper bound, then there is a maximal element.
Interpreting this lemma in terms of design optimisation, we say that when we can get a best
design from a series of design solutions, which have the property that if one design is better
than the previous design, then we can get an optimal design in this direction. Thus we
conclude with a proposition based on these definitions.

 29. 10

Generative Art 2002

Proposition 6.1 There is an optimal design solution in any direction in a multi-objective
design problem, provided that we can get a best design from a series of design solutions
which have the property that one design is better than others.

This part of research is still on going and we expect to use more real design examples to
verify these definitions and proposition.

7. System implementation and applications

Based on the theory described above, we have implemented a system based on 3D solid
modelling techniques. Two integrated design studio environments have been integrated in this
system. The platform is personal computers under windows 2000 or windows XP of
Microsoft. The programming languages include Microsoft Visual C++ version 6.0, ACIS 3D
Kernel, MatLab version 6.1 of MathWorks, Inventor version 5 for additional solid
modification. One of the features of the system is that all the sub-systems are fully
compatible with commercial CAAD tools and systems, as well as rapid prototype facilities. A
large number of object-oriented components of sophisticated surfaces and envelopes have
been built using evolutionary techniques and partial ordering theory. Computational
mechanisms have also been developed with which these basic data structures and components
can be visualised, combined or split to allow new data structures or new forms to be derived
using generative techniques. We are also exploring the possibility to scale up the applications
with potentially thousands of solid objects with textual and spatial design details in our
Global Virtual Design Studio powered by high performance computer and multiple VR
projection facilities.

The first part of the system we have implemented is named as TowerDev. This is a fully
controllable solid modelling environment with non-linear transform of existing solid models
into design prototypes. The environment consists of an ACIS SAT viewer; Fly through
viewer; Colouring and Rendering; and Programmable design routines for architectural
envelopes. The main user interface of this part of the system is as follows:

 29. 11

Generative Art 2002

Fig 7.1 Graphical user interface of the system

Some design examples created by this system are illustrated as follows:

Fig 7.2 The variety of tower structures

Fig 7.3 Models generated by functional envelopes
 29. 12

Generative Art 2002

Acknowledgements

This research is partially sponsored by the Research Fellow Matching Fund Scheme 2001
(No. G.YY.34) of the Hong Kong Polytechnic University, the Young Scientist Award Project
of Shandong Province of China, the Science and Technology Project of ShanDong Province,
and the Natural Science Foundation of China.

References

[1] Frazer, J. H. (2001) Design Workstation on the Future. Proceedings of the Fourth
International Conference of Computer-Aided Industrial Design and Conceptual Design
(CAID & CD '2001), International Academic Publishers, Beijing, 2001; 17-23.

[2] Frazer, J. H. (1995) An Evolutionary Architecture. Architectural Association
Publications, London, 1995.

[3] Frazer, J. H. (2000) Creative Design and the Generative Evolutionary Paradigm. In P.
Bentley ed. Creativity and Design. In press. 2000.

[4] Gerd Fischer (editor), Mathematical Models, Friedr, Vieweg & John
Verlagsgesellschaft mbH, Braunschweig, 1986.

[5] Tang, M. X. Knowledge-based design support and inductive learning. PhD Thesis,
Department of Artificial Intelligence, University of Edinburgh, 1996.

[6] Tang, M. X. A knowledge-based architecture for intelligent design support. The
Knowledge Engineering Review, 1997; 12(4): 387-406.

[7] Peter J. Bentley (1996), Generic evolutionary design of solid objects using a genetic
algorithm. Thesis of doctor of philosophy, University of Huddersfield.

[8] Xiyu Liu, Tang M. X. and John H. Frazer (2002) Shape reconstruction by genetic
algorithms and artificial neural networks. Proceedings of The 6th world Multi-
conference on Systemics, Cybernetics and Informatics (SCI2002).

[9] Foley, J., van Dam, A., Feiner, S., Hughes, J. (1990), Computer Graphics Principles and
Practice (Second edition), Addison-Wesley.

[10] Goldberg, D. E., (1989). Genetic Algorithms in Search, Optimisation & Machine
Learning. Addison-Wesley.

[11] Frazer, J. H., Frazer, Julia, Liu Xiyu, Tang Ming Xi and Patrick Janssen, “Generative
and Evolutionary Techniques for Building Envelope Design, Generative Art, Milan,
2002.

 29. 13

