
Generative Art 2002

The Evolving Role of the Artist

Prof. J. Sheridan, MFA

Chairman, Department of Experimental Animation
Maryland Institute College of Art, Baltimore, MD, USA.

e-mail: jamy@arthink.com

Abstract

For more than a decade the author has designed and used algorithmic systems to produce

artworks that incorporate generative and evolutionary concepts, forms and processes. This

work has demonstrated that algorithmic aesthetic processes and products can be effectively

created and modulated by both human beings and non-human systems. However, this work

has also raised important questions such as:

- What role can the individual human artist play in a cultural economy based upon

industrialized generative processes and non-human systems?

- How can artists integrate standardized scientific languages and algorithmic processes into

personal visions and expressive languages?

- How can artists capture their personal creative processes and encapsulate these processes

in industry standard systems and software; and should they do so?

- How might the generative systems and products created by human and non-human artists

function and evolve in the larger social context?

To address these questions, in this paper the author uses examples taken from his past and

present artwork to illustrate the opportunities and pitfalls presented by computerized

generative aesthetic processes and tools. In addition, the author offers a set of conjectures

intended to help clarify issues such as: the evolving role of the artist as a producer of

knowledge and form, and the value and appropriate structure of personalized computer

languages for artists.

 36. 1

Generative Art 2002

1. Introduction

During the past decade or so, I created a number of generative systems that I have used to

produce computer-based, real-time, data-driven, human-scale, art installations and

performances. These works embody concepts and images that grew from my eclectic

synthesis of evolutionary concepts, algorithmic aesthetic processes, and art historical

practices and precedents. John Dunn, an artist-programmer who I have had the good fortune

to collaborate with for many years, created the computer tools and systems that I use to build

and program my personal generative systems. He also composed the DNA-driven

synthesized music that often accompanies my work.

It is worth noting here that John Dunn and I have both worked with Sonia Sheridan, Professor

Emeritus of the School of the Art Institute of Chicago, and our work has been influenced by

her approach to generative systems. For example, we share her belief that artists should be

empowered to explore new forms of expression and production using contemporary industrial

and scientific knowledge, systems and practices. We also share her conviction that artists

must be able to develop unique personalized systems of practice and notation that

complement the industrial practices and tools. We believe that artists can best explore and

express their multidimensional, all-too-human, and often pre-verbal ideas by using multiple

complementary creative systems that foster the integration of social scale and personal scale

knowledge.

The purpose of this paper is to introduce the reader to some of this work and to illustrate some

of the opportunities, pitfalls and questions that emerged from using computerized generative

aesthetic processes and tools. To this end, I will discuss three different bodies of work, each

built upon a unique computing platform and set of aesthetic concepts. I will also discuss the

interaction between the concepts embedded in the tools, the concepts that the artist brings to

the work, and the concepts that emerge from the interaction of the tools and the work. While

some of these works and the computing platforms they were built on may appear visually

archaic today, I find that many of the concepts and lessons they embody are still very relevant

to contemporary generative art practice.

 36. 2

Generative Art 2002

2. Dark Matter and Tree of Life

Dark Matter and Tree of Life are two installation artworks I created in 1994-1995 using the

Vango software system created by John Dunn in 1991-1992. These works were presented as

human-scale, immersive, real-time, computer animated installation performances with

accompanying DNA-driven synthesized music [1].

Figure 1. Still images taken during an animated Dark Matter installation-performance

Figure 2. Still images taken during an animated Tree of Life installation-performance

Vango was a DOS-based, pre-web, real-time, animated hypertext system that used ASCII

character graphics in innovative ways. John built Vango using character graphics because at

that time he was constrained by a non-competition agreement that prevented him from

developing ‘real’ graphics systems; i.e. pixel graphics systems like Lumena. Of course, it

was precisely because Vango was not a ‘real’ graphics system that it was so interesting and

revealing to work with.

 36. 3

Generative Art 2002

For example, because Vango used character graphics, which were stored in a PC’s hardware

ROM, it was incredibly fast compared to pixel graphics systems of the time and therefore the

creative feedback loop between the artist and the animated images was also very tight and

fast. Of course, in addition to speed Vango had other unique structural and creative properties.

 Vango let an artist:

• ‘Paint’ in a 2 dimensional hyperspace using ASCII characters and using each character’s

CFB[2] attributes independently or in any combination.

• Combine multiple images in unique ways based on the CFB attributes of the characters

that made up the images as well as on a transparent character attribute.

• Create user or system-activated buttons that jumped or slid the user to new locations in the

2D hyperspace while combining images in real-time.

• Create user or system-activated buttons that triggered MIDI events.

• Save and return to specific states of the system and therefore save and return to various

states of the images, hyperspace trajectories, and CFB combinations.

After working with Vango for some time, I developed a whole set of generative processes that

exploited Vango’s capabilities and allowed me to develop a unique set of images and

concepts. However, for the purposes of this paper, I think the system’s great speed, its ability

to combine sliding images in real-time, and its ability to individually set character CFB

attributes are particularly worth mentioning.

Figure 3. Vango menus, color palette, CFB selector, navigation pads, and ASCII palette

 36. 4

Generative Art 2002

Figure 4. Vango hyperspace map and jump-slide-MIDI buttons

Because Vango could animate all 4000 characters on the 80 column by 50 row VGA screen at

the rate of 50 characters per second when running on a 486 PC with local bus video, I was

able to develop ‘herds’ of animated objects on my desktop PC. Each character position on the

screen became an individual animation that was generated by sliding a series of characters

past that position while ‘fixing’ the viewers eyes with stable color structures enabled by the

CFB controls. This technique made it possible for a viewer to see animated characters rather

than sliding characters. I could also group the sliding characters into visually meaningful units

or herds that would, from the viewer’s perspective, visually unite or break apart depending

upon how I painted the interacting images and how I set up the hypertext button slide

trajectories that combined the images. In any event, the animation effect was so strong that

some viewers reported becoming seasick from the intense visual motion. (See the right hand

image in figures 2 and 5 for static examples.)

Figure 5. Vango ASCII image structure examples

Having such a fast system also meant that I could use musical ideas to structure my visual

processes and that I could involve viewers in the work in novel ways. For example, I used a

 36. 5

Generative Art 2002

musical theme and variation structure to create the complex motion trajectories that animated

the work’s imagery. In addition, I used the fast graphics to create lines in the images that

would scan and articulate the bodies of any viewers who were seated in the work. Vango’s

speed, coupled with its ability to change images, trajectories, colors, CFB interactions, and

MIDI events on the fly, allowed me to produce a remarkably wide range of image structures

and viewer experiences using a very limited set of generators.

Figure 6. Hypertext sliding motion trajectory maps from Dark Matter and Tree of Life

While Vango certainly enhanced my creative process, the system also stimulated me to

explore a number of genetic art ideas. For example, because Vango used the characters' CFB

attributes when combining images as they slid or jumped through the hyperspace, Vango

implicitly embodied a simple but dynamic genetic system. And, because Vango provided the

ability to save and return to specific system states, it also provided a glimpse into an evolving

genetic system in which my artistic decisions acted as the selective pressures. In essence, at

any given point in the history of an artwork, I would use Vango to create a mother image and

a father image. Then I would build the trajectories and assign the CFB settings that would

combine the parent images’ characters. The resulting real-time animation and combination

process would produce a set of child images; or more accurately, a herd of child character

sequences. I would repeat this process many times, then move back and forth in time to view

the different genetic imaging systems I had created.

I found this whole process absolutely fascinating because I could use a simple, affordable,

understandable, high-feedback, and animated computer imaging system to explore my

multidimensional ideas about genetic imaging, structural transparency, fractal time, image

evolution, process evolution, and the evolution of metaphor, to name a few. Moreover, at a

 36. 6

Generative Art 2002

time when ‘real’ genetic animation systems could not realistically run on an artist’s desktop

PC, I could actually work on my little 486 with herds of ‘object-oriented’ ‘genetic’

animations that lived in a large hyperspace and ‘interacted’ with the viewer. My imagination

went wild.

Figure 7. Various CFB 'genetic' interactions from Dark Matter

However, Vango had another structural property that made it interesting genetically; it used

indexed characters and colors to create images. By using indexed entities to create images,

Vango implicitly created a simple system in which there was a distinction between the

image’s genotype and its phenotype. The genotype of a Vango artwork consisted of the

character and color indexes that made up the images and the hard-coded button trajectories.

The phenotype of the work was generated when the images were played and projected on a

particular surface using a particular font and color palette. (See the right side of figures 1 and

7.) This aspect of Vango was also fascinating to me because I could create different ‘strains’

of an artwork simply by varying any combination of its CFB genetics, its font, and its

projection environment.

 36. 7

Generative Art 2002

Figure 8. Genotype (visible as default phenotype) and screen phenotype from Dark Matter

Of course, using Vango also had its pitfalls, two of which deserve mention here. The first

problem was that the more successful I became at producing interesting animations based on

unique character fonts, the more difficult it became to actually use the system. This is

because Vango, like most DOS ASCII applications, used the same character set for authoring

the artwork and playing the artwork. As a result, the more I successfully modified the

character fonts for aesthetic effect, the more difficult it became to read the Vango menus and

tools, and the more difficult it became to read DOS screens. In fact, John and I used to joke

that my pieces looked as if the were written in Klingon, an imaginary alien language used in

the television series Star Trek. In the end, I had to memorize all the Vango menus because

they had become unreadable.

Figure 9. Progressively modified character sets from Dark Matter and Tree of Life

 36. 8

Generative Art 2002

Figure 10. Progressively modified Vango menus and tools

Figure 11. Progressively modified DOS screens

The second problem was that Vango was a unique world unto itself. It was character based, it

could only handle pixel graphics in an extremely limited way, it could only generate a few of

MIDI events, it could not cooperate with any of the other evolving pixel graphics systems,

and its hypertext capabilities were about to be superseded by web tools. Vango had become

too isolating and unique, so it was time to move on.

3. Garden of Initial Conditions and Emerging

Garden of Initial Condition and Emerging are two installation artworks I created between

1996 and 2001. As with my earlier work, these works were presented as human-scale,

immersive, real-time, computer animated installation performances with accompanying DNA-

driven synthesized music[3]. The evolving carpet-like images were projected on a

dimensionalizing bed of sand in a totally dark installation space that made the images float

dynamically. In addition, viewers were encouraged to play in the sand and become part of the

work. The relaxed pace of these works in conjunction with the DNA music and the tactile

projection surface gave the works a sensuous yet meditative quality.

 36. 9

Generative Art 2002

Figure 12. Still images taken from animated Garden of Initial Conditions performances

Figure 13. Jamy Sheridan and John Dunn preparing an installation

I created these works using Kinetic Art Machine (KAM), algorithmic multimedia software

created by John Dunn in 1995-1996 with my assistance. KAM was a DOS-based software

system that grew out of John’s earlier Kinetic Music Machine (KMM), a MIDI composition

and sequencing system he developed in the mid-1980’s that enabled musicians to create

sophisticated algorithmic compositions that would run in real-time on an IBM PC. KMM was

the system John used to create his early DNA music, it was the system I used to create music

for my first Vango works, and it provided a proof-of-concept for many of the ideas that were

further developed in KAM. Some elements of KAM also grew out of an ongoing

conversation about artists’ computer systems and languages that John and I began in the mid-

1980’s.

 36. 10

Generative Art 2002

Figure 14. KMM menus

Figure 15. Rug_27; KMM code

KAM was conceived as a direct manipulation meta-language optimised for real-time MIDI

and data-driven algorithmic visual processes. It was a meta-language in that it was a

language to build languages, a general-purpose computer language that enabled artists to

build personal languages of form and process. It was a direct manipulation language because

KAM only provided functioning modules that the artist programmer could assemble into

larger structures using a relatively metaphorless GUI. It was real-time system in that any

changes to a KAM program structure or variables instantly affected the acoustical, visual, or

 36. 11

Generative Art 2002

functional output of the program. KAM allowed the artist-programmer to work in a very

fast, right brain feedback loop and thereby maintain a very direct relationship between the

programming ideas and the aesthetic output.

KAM let an artist:

• Create complex real-time program structures that could be used to drive MIDI sound,

generative raster graphics, and external processes.

• Explore unusual time structures and relationships by driving individual program processes

with independent clocks.

• Save and index into specific states of the system and therefore save and return to various

states of the aesthetic process.

• Drive evolving structures, images, sounds, and environments using real-world data, DNA

and protein data, for example.

• Connect to the outside world by reading and writing to ports and memory addresses.

As with Vango, after I worked with KAM for a while, I developed a group of generative

processes that exploited its capabilities and allowed me to develop unique concepts, mark

making processes, and artworks. However, I found three of KAM’s abilities particularly

important: KAM could use data to drive audiovisual processes, it could embody aesthetic

evolution in saved system states, and it allowed me to explore evolutionary concepts such as

aesthetic genotype and phenotype.

Figure 16. KAM menus and code example

 36. 12

Generative Art 2002

KAM’s ability to use DNA and protein data to drive both visual and musical processes was

valuable for a number of reasons. First, John and I could use the same DNA-protein data to

drive the music and the visuals for an installation. As a result, at a formal level the visual

structures I produced with KAM worked very well with the music John composed; the music

and images seemed to fit together effortlessly. I speculate that this because we both used the

same source data and the same basic generative tools. In addition, using real DNA data

allowed me to focus the viewer’s mind on the general idea of code driven form and structural

cascades; an idea that I believe has many implications in the fields of art, architecture, media

production, and social theory to name just a few.

Using DNA data in the artworks also helped convey the idea that the artworks were alive.

Physical genetic and cultural memetic processes became equated in the viewer’s mind.

DNA, at the root of a genetic tree of life, become associated with the ‘tree of life’ motif, the

root of a memetic tree of metaphor. My ‘DNA rugs’ and the traditional ‘tree of life’ tribal

rugs I referenced in my work were seen as part of the same evolutionary process. Moreover,

since the artworks themselves had DNA, viewers thought of them more as living things.

Figure 17. Garden of Initial Conditions, strain 1 and strain 2; KAM code and animation frames

 36. 13

Generative Art 2002

Conceptual issues aside, on a formal level using the DNA-protein data helped me to create

very interesting evolving visual forms. For example, to create the central tree-of-life motifs

seen in figure 17 above, I used DNA data to modulate the radii of a series of expanding,

contracting and XOR’ing rectangles. The process was like a feedback loop, driven with an

apparently random yet structured signal. In any event, by carefully tweaking generative

parameters, I was able to get my code to produce some truly wonderful patterns that bore a

remarkable resemblance to the familiar yet unique patterns found in best tribal carpets. I used

this idea and related non-DNA strategies to produce many wonderful unique generative

marks.

I also found KAM’s ability to save and index into system states exceptionally useful. In

Garden of Initial Conditions, I used system states to explore aesthetic genotypes and

phenotypes. I created one basic code structure, i.e. genotype. I then copied the genotype, i.e.

file, adjusted combinations of parameters such as color, timing, and limit value, then saved

the new state of the work. I created multiple strains of the work by applying the selective

pressures of my decision making process to copies of the genome; i.e. new files.

Figure 18. Emerging; KAM code and animation frames

 36. 14

Generative Art 2002

The primary authoring and performance processes underlying Emerging were also based on

evolving system states, but within a single file. More specifically, I built a simple mark-

making engine driven by timed events, then created a series of marks and events which I

saved as index level one. I then created another related set of marks and events which I saved

as index level two, and so on until the work was ‘complete’. This process worked very well,

especially given the visual form of Emerging, inspired as it was by theories of cosmic and

cultural evolution.

KAM certainly was a wonderful tool to use. But not surprisingly, it also presented its share of

pitfalls. For example, like all young software, KAM evolved at a furious rate. When John

first released a beta of KAM, I built 183 different versions of one piece before we uncovered

all the bugs and unintended side effects within the system code and within my own artist’s

code. Ironically, just as we evolved KAM into being, the DOS world KAM was based on was

nearing the end of its life cycle. DOS programs were becoming passé as the new GUI

technologies began to dominate.

However, the worst problem associated with the demise of DOS was that, while KAM was a

very fast DOS program, fast new graphics libraries and DOS drivers for new graphics cards

became increasingly difficult to locate. This meant that John could not easily adapt KAM to

take advantage of the ever-increasing speed and accelerated drawing functionality offered by

the rapidly evolving graphics hardware systems. This also meant that I could never get my

KAM programs to spit pixels fast enough to let my carpets fly in the way that I could with the

hardware accelerated, character-based Vango. Another lingering side effect of this shift away

from DOS is that I must still maintain seldom-used DOS computer systems just so that I can

show my older work, much of which was tuned to a specific CPU.

There was also an architectural constraint built into KAM graphics because of its DOS roots.

KAM could only draw on one graphics ‘screen’. It was not possible to composite images nor

was it possible to buffer images or processing of image components in the background.

While a constrained creative system often drives its users to create well crafted and focused

work, it also precludes many creative practices. In any case, in spite of our best efforts, the

system had again become too isolating and unique. And again, it was time to move on.

 36. 15

Generative Art 2002

4. Sketches for Life by Analogy

Fortunately for me, beginning in the late1990’s John and I began to discuss how to translate

the basic concepts of KAM, as well as portions of its precursors Vango and KMM, into the

Windows GUI environment. As a result, and after an enormous amount of translation and

new work on John’s part, in 1999 he released the first version of SoftStep, a Windows-based,

real-time, algorithmic MIDI composition and sequencing system.[4] In retrospect such a

move seems obvious, but at the time the speed penalty exacted by the GUI itself was

extremely significant. Even with the faster computers, newer graphics libraries, and

accelerated graphics cards, it was very difficult to make a Windows system run as fast as the

DOS-based KAM system; particularly when you remember that KAM was a real-time

system. In fact, at that time it was so difficult to produce acceptable simultaneous real-time

MIDI and graphics performance on an affordable PC that SoftStep did not support graphics

when released. However, as SoftStep matured, processors, memory and graphics hardware

got much faster, as did Windows itself. Accordingly, in 2001 John began to add graphics

functions to SoftStep, specifically in the form of graphics libraries accessed through user

programmable function modules.

Today, SoftStep provides a relatively metaphor-free direct manipulation GUI environment

that enables the artist to do many things including:

• Create complex real-time program structures that can drive and manipulate MIDI sound,

generative and sampled raster graphics, text, data, and various external processes.

• Explore unusual time structures and relationships by driving individual program processes

with independent clocks.

• Build interactive real-time control surfaces that simplify the process of creating

algorithmic music, imagery, and environments.

• Easily program specialized and reusable user function modules.

• Easily create custom scales and other data structures.

• Save snapshots of the system then return to specific states of the aesthetic process.

• Import numeric, text and genetic data sets using the DataBin and BioEditor.

 36. 16

Generative Art 2002

• Communicate with micro-controllers like the Basic Stamp and EZ-IO.

Figure 19. SoftStep code, animation frame and user function code examples

After working with SoftStep since its beta release, I have again developed a new set of

generative processes. These processes add to those capabilities that carried over from

previous systems such as system state snapshots and data-driven marks. A few of these new

processes seem particularly worth noting in this discussion. To begin with, I am now able to

use sampled graphics as part of my generative processes. For example, in addition to

generating marks from simple patterns of interference or feedback or mathematical equations,

I can now create marks by feeding sampled forms and captured picture elements to various

convolution, combination and filtering processes. Having this new class of procedural marks

greatly extends my expressive palette without requiring me to sacrifice my basic generative

approach. I can also mix sampled representational images and generated marks at will, a

capability analogous to easily mixing sampled and synthesized sounds. This ability has

introduced me to new methods for generating and evolving complex time-based imagery.

 36. 17

Generative Art 2002

Figure 20. Sketches for Life by Analogy; SoftStep code, image components, and animation frame

SoftStep has also made it possible for me to continue and expand my experiments with time-

enveloped marks, i.e. marks in which different visual elements or states of an entity are drawn

at perceptibly different rates under program control. Time-enveloped marks are analogous to

sonic notes that use ADSR envelopes, but visual marks usually run on a much slower time

scale. Although I used this enveloping technique extensively when I used KAM, SoftStep’s

ability to manipulate high resolution sampled images using independent clocks gives me a

whole new set of options to explore. I believe that manipulating the envelope structure of

generative marks will prove to be a powerful way to develop interesting phenotypic variations

or even new strains of an algorithmic artwork.

And finally, SoftStep has helped me to investigate a problem related to envelopes, i.e. how

best to produce subtle and expressive generative instruments. A generative instrument is a set

of processes and controllers that can be used in real-time to expressively create and modulate

generative aesthetic systems. Examples of existing generative ‘instruments’ include: a brush

with canvas, a keyboard with waveform synthesizer, a power carver with wood, a set of

Buchla wands with MIDI lights, an Xacto knife with foam core, and a human-scale touch

screen with mark synthesizer. However, none of these instruments easily supports the

appropriate mixture of computer programming actions, visual imaging actions, sound and

event composing actions, and expressive body actions that my working style demands.

SoftStep, on the other hand, begins to allow me to create new instruments by mapping input-

process-output relationships in ways that the I/O device manufacturers and software library

vendors never intended. I don’t have to be a systems programmer to build these connections

because John has provided me with an appropriate scale language that makes it relatively

 36. 18

Generative Art 2002

easy. I can unite a physical interface to a micro-controller to a generative process running in

SoftStep and output the results to audio-video projection systems while simultaneously

controlling the installation environment. My instrument may not help me create a true virtual

reality, but it will let me create a very expressive and immersive aesthetic experience while

running on a PC an individual artist can afford.

Of course, having praised SoftStep’s capabilities, it is only right to mention some of its

shortcomings, two of which are especially challenging. First, because of various technical

problems that arose from building a real-time system in the Windows environment, the

graphics functions in SoftStep are not tightly integrated into the modular structure. As a

result, I must use multiple programming paradigms to create my work. This makes the

learning curve for programming SoftStep visuals much steeper and less intuitive than it could

be. But more importantly, this lack of integration makes programming errors much more

common and slows down the creative process. Mind you, the create process is still good, just

not as good as it could be.

The second, and most serious problem for me with the original SoftStep architecture is the

lack of a module encapsulation methodology. On the MIDI side, this problem is not as

noticeable because John has already encapsulated so many algorithmic MIDI functions into

the existing module structure. However, on the graphics side, while it is quite easy to build a

chunk of imaging functionality and wrap it up for future reuse in the form of a user function

module, it is basically impossible to encapsulate combinations of modules to make up a

‘whole visual function’. This constraint makes it much more difficult to scale up the large

mark and image structures associated with a complex artwork.

So, despite SoftStep’s power and ease of use, it appears that it will soon be time again to

move on to new system, one that has evolved to adapt to the latest needs of generative visual

artists and musicians. And, of course, John has already developed the core of a new system

designed precisely to meet these needs and more than a few future as-yet-unknown needs. A

product of John and my decade-long conversation and John’s three decades of programming

experience, this new system will return to its KMM-KAM roots by providing visual artists

with a very fast, highly scalable, direct manipulation meta-language. However, this language

will run in real-time in Windows and be open and extensible, which will make a wide array of

platforms, systems and libraries accessible to artists in unique ways.

 36. 19

Generative Art 2002

I especially am excited by the following possibilities. First, I will be able to build very deep

reusable hierarchies of marks, forms, and images, any part of which can be programmatically

controlled. Second, I will be able to create my own personal appropriate scale language and

create extensions to this language. That is, I will be able to build my personal language so

that it embodies the level of abstraction that I personally need in order to be able to

simultaneously work in the structured world of programming and the expressive world of fine

arts imaging. However, I will not have to give up the ability to drill down into lower levels of

abstraction when necessary, a sacrifice that many easy to use tools demand. Nor will other

artists be forced to adopt my particular functional abstractions, they will be able to build their

own. Not only will artists be able to build their own abstractions, they will be able to share

and interoperate their functional thoughts with others. Moreover, I should be able to add new

low-level functionality as it evolves.

Third, I am overjoyed that I may be able to create computer based generative systems using a

language that evolves under me. In practical terms, that means that the system is being

designed so that changes to the language interpreter do not require ‘rewriting’ user level code.

 This means that I can spend more of my time evolving my artworks and less of my time

evolving myself to adapt to the changing systems.

Fourth, I look forward to the possibility that I may easily communicate with laboratory

instruments, industrial I/O and control systems, and TCP/IP networks using my own

personalized language. This is in addition to the existing MIDI and micro-controller based

communications I can use to control lighting, sensing, and environmental systems.

Fifth, I anticipate that I can use the new language to drive other software systems, in essence

treating them as specialized function libraries. This would allow me to develop my own non-

standard ways to interact with standard systems. For example, 3D imaging, analysis and

rapid prototyping systems are particularly suitable for this approach.

Before concluding, I should note here that other comparable languages for artists exist, such

as the popular Max/MSP that runs on the Macintosh. However, for me personally, it is the

ability to run in real-time on my existing PC’s, the ability to interoperate with other PC

applications, the ability to participate in the basic design of visual generative systems with

John, and the fundamental elegance and openness of the system architecture itself, that keeps

me coming back to John’s systems to support my personal artistic evolution.

 36. 20

Generative Art 2002

5. Conclusion

For more than a decade I have designed and used computerized algorithmic systems to

produce artworks that incorporate generative and evolutionary concepts, forms and processes.

When I first began this process, many felt that the major question was whether these

generative processes could be used masterfully and whether the products should be

recognized as Art.

My experience with the systems described above, and others, has convinced me that the

answer to that question is obvious. Given enough time and energy, any process and product

can be mastered and can become Art. The corollary is also obvious. Whether or not a creative

work or process is recognized as Art at any particular time and place depends on social and

historical forces that have little necessary relation to the original creative acts. Artists have

no real choice but to just go ahead and explore what seems to them important. In fact, this

question proved much too narrow to be helpful.

Instead, I have since found other questions to be more important. For example, I think it is

important to ask:

• What types of new ideas can and should artists engage within the creative process and to

what extent should these ideas be allowed to transform the creative process?

• What role can the individual human artist play in a cultural economy based upon

industrialized generative processes and non-human systems?

• How can artists integrate standardized scientific languages and algorithmic processes into

personal visions and expressive languages?

• How can artists capture their personal creative processes and encapsulate these processes

in industry standard systems and software; and should they do so?

• How might the generative systems and products created by human and non-human artists

function and evolve in the larger social context?

To confront these questions, but not necessarily answer them individually or completely, let

me conclude this paper by proposing two conjectures based on my experience with the

generative systems I described above.

 36. 21

Generative Art 2002

Conjecture 1. Artists should focus attention on the structure of genetic and memetic systems

evolving in time, the purpose being to make the behavior of these systems sensible to

themselves and others. By extension, artists should help create and use generative systems

that support this artistic focus but that also help existing creative processes adapt to the new

circumstances.

I suggest this idea because I assume that human beings have become masters of large-scale

industrial production, producing goods, knowledge, life forms, and even new production

processes using large-scale social, scientific, and technical systems. I further assume that this

productive activity exists in time and has significant impact upon human lives over time. And

finally, I assume that some of the new core technologies of this productive onslaught will be

genetics and memetics coupled to computer science.

If this is true, I believe it is essential that individual artists produce work by experimenting

with simple computerized genetic and memetic systems and other ideas emanating from the

world of science. Simple systems let artists see the essence of new forms and dynamics

without inhibiting imagination. Sense based systems, ones that incorporate sight, sound,

touch, and motion for instance, bring into play the enormous pattern recognition abilities of

the human body and stimulate the human imagination. This is important because, as I believe

Einstein said, “Imagination is more important than knowledge.”

To support their imaginations, artists should continue to rely in part on the power of a well-

tuned intuition. Intuition, or pattern-knowledge, has served many human beings well,

including both artists and scientists. However, all creative people should be aware of the

limits of validity and functional limitations of any form of knowledge, whether it is subjective

or objective, personal or public, intuitive or scientific. I believe it is a lack of clarity on this

last point that forces many artists and scientists to misunderstand their own roles and

contributions to knowledge and to society.

Artists should also use generative systems that foster experimentation with various time

structures because varying the relative timing of the underlying generative processes often

produces form variants and varying the timing of sense impressions often changes the

meaning or implications of the experience. Stated another way, phenotypic expressions are

often time sensitive. These kinds of tools can help artists and viewers develop sophisticated

 36. 22

Generative Art 2002

structural and temporal intuitions and surface the new ideas that individuals and societies

need to navigate into the future.

Conjecture 2. Since computers capture action in the form of language, a running program and

its side effects can be considered the fundamental mark of a computerized generative

system.[5] Therefore, artists should work with computer language based creative systems that

enable them to directly handle these fundamental marks. Using these systems will also help

artists better understand the structure, behavior, and creative potential of reified language, i.e.

computer software. However, in the process of working with these systems, artists must also

be careful lest their works quickly become extinct due to the rapidly changing computing

ecology.

I make this proposal because each creative system is slightly different. Tools are slightly

different from languages, clocked events are somewhat different from timelined events,

genetic transparency is a little different than optical transparency, and computer marks are

different from hand made marks. By implication, the insights each type of system provides

and the products it produces are slightly different and effect humans in slightly different

ways. Since exploring the subtle differences in life through word, image and music is the

traditional purview of the artist, it seems clear to me that artists can naturally adapt to these

new generative processes as long as they are empowered to the adjust the processes to their

own needs while preserving the essence of the new relationships.

Furthermore, I believe it is very important that artists help explore and articulate these

differences between systems. Subtle differences become the small changes that can make the

big difference in the long run of cultural evolution. They are the butterflies in the weather

pattern of global culture change. It is one of the artist’s important social functions to catch,

identify, and display these butterflies for all to view.

However, once artists capture the butterfly by creating artworks using the new systems, they

should carefully consider how to preserve and share their processes and products. As an

artist who has spent countless hours trying to recreate particular computer ecologies so I can

show particular works that embody particular sets of non-verbal relationships that cannot be

properly communicated in any other way, I can assure you that this is a big issue. There is an

enormous difference between the documentation of an idea and the experience of the situation

that generated the idea. There is an enormous difference between seeing something fixed into

 36. 23

Generative Art 2002

a photograph and seeing the dynamics of that thing. There is an enormous difference between

a genotypic abstraction and the phenotypic experience.

If artists actually hope to show their works to future generations, or even a few years from

now, they must carefully conserve the entire generative system that they used to produce and

show the work. In addition, they must meticulously document the work for themselves so

they can remember how the work functioned and what its technical requirement were.

Producing the illustrations for this paper forcefully reminding me of this reality.

6. References

[1] CD: Magic Carpet Music, 1. for Tree of Life: Alpha/Beta/Folding in Proteins, 2. for Dark

Matter: DNA of HIV #7. by John Dunn

[2] Each ASCII character in a DOS-based PC has three attributes: a character(C) index, a

foreground(F) color index, and a background(B) color index. In Vango each character’s CFB

indexes can be accessed independently.

[3] CD: Algorithmic Music From DNA, including HIV DNA #11, HIV DNA #39, HIV

DNA #110. by John Dunn

[4] SoftStep 3.0 by John Dunn. Available from Algorithmic Arts at: http://www.algoart.com

[5] From Conjectures on Space, by Jamy Sheridan and Peter Anders, published in Minds,

Machines, and Electronic Culture, the proceeding of The Seventh Biennial Symposium on

Arts and Technology at the Center for Arts and Technology at Connecticut College, New

London, CT, March 1999.

 36. 24

