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Abstract 

This paper deals with applying evolutionary methods in computer aided design. The 
design process is an iterative one consisting of several steps. It starts with a preliminary 
or conceptual design, which is then analyzed or tested in order to find out which of its 
elements must be redesigned or refined. The process of evaluation and optimization is 
repeated until an acceptable solution is found. Since designing can be treated in 
computer science as a search process, where all possible designs form a search space, 
it is possible to use search techniques such as evolutionary ones. 

As evolutionary search consists in evaluating and refining possible solutions, it can be 
seen as analogous to a human design iterative process of analysis, testing and 
optimization. Similarly to the refinement step in human design, in evolutionary search 
designs to be transformed are determined according to their evaluation (fitness). The 
refinement step is often performed not on actual solutions (phenotypes) but on their 
coded equivalents (genotypes).  

Since in design problems genotypes in the form of binary strings are very often 
insufficient we propose to use a graph-based representation of genotypes which enables 
us not only to express geometrical properties of an object but also its attributes (like 
color, material etc.) and relations between object components.  

In this paper we adopt hierarchical hypergraphs as they can represent an artifact with 
both multi-argument relations and hierarchical dependence which are impossible to 
express by other structures. The greatest advantage of this representation is its ability to 
describe in a uniform way all types of relations and objects and to produce highly fitted 
individuals.  
 
Using hypergraphs in an evolutionary search requires the adaptation of traditional 
evolutionary operators like cross-over and mutation. As the hypergraphs selected to be 
transformed by the evolutionary operators at the subsequent stage of the evolution and 
their structures are not known a priori the operator must be defined in a way which 
allows for an "online" computation of new hypergraphs. Genetic operators working on 
hypergraphs and the structure of an evolutionary design system is presented.  
 
The method is illustrated by examples of floor-layouts generated by a house design 
system, where structures of floor-layouts are represented by hypergraphs. In our 
approach a cross-over operation exchanges subgraphs representing the functional 
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areas with different internal arrangements, while mutation affects local and global 
attributes as well as the graph structure (by adding or deleting subgraphs) 

1. Introduction 

The design process, computer aided or traditional, is  an iterative one consisting of 
several steps [1]. It starts with a preliminary or conceptual design, which is then 
analyzed or tested in order to find out which of its elements must be redesigned or 
refined. The process of evaluation and optimization is repeated until an acceptable 
solution is found. Still, majority of computer aided design systems focuses on refining 
parameters specifying design and optimizing it. They usually work on a single design at 
a time. Since designing can be treated in computer science as a search process, with  
all possible designs forming a search space, it is possible to use search techniques used 
in other domains. 

There is a number of search methods well established in computer science that can also 
be used in the space of designs. [15]. One of them is an evolutionary technique. Instead 
of one solution at a time a larger subset of the search space, known as a population, is 
considered. As evolutionary search consists in evaluating and refining possible solutions 
it can be seen as analogous to a human design iterative process of analysis, testing and 
optimization [1,3]. Similarly to the refinement step in human design, which is based on 
earlier analysis and testing, in evolutionary search designs to be transformed are 
determined according to their evaluation (so called fitness). The refinement step is often 
performed not on actual solutions (called phenotypes, in this paper - designs) but on 
their coded equivalents (called genotypes). 

In design problems genotypes in the form of traditionally used binary strings [1,4,11,14] 
are very often insufficient as not only geometrical properties of an object has to be 
represented but also its attributes (like color, material etc.) as well as relations between 
object components.  

The methods used in CAD problems like boundary rep resentations, sweep-volume 
representation, surface representations or CSG (constructive solid geometry) [10,12,13] 
allow only for the "coding" of geometry of an object being designed and do not take into 
account the inter-related structure of many design objects i.e. the fact that parts (or 
components) of an object can be related to other parts in different ways. Such a 
structure is usually represented as a graph.  

Different types of graphs have been used in this domain, for example composition 
graphs [6,7]and hierarchical graphs, in which relations such as being a part of or being 
included in were allowed [8]. An evolutionary design system based on these types of 
graphs was presented earlier in [18].  These graphs proved useful in different domains 
of design [2], but they lack the ability to represent structures in which more than two 
elements are related by the same relation. Such a possibility is given by a so called 
hypergraph. But traditional hypergraphs are in turn unable to represent hierarchical 
relations. Therefore in this paper we adopt hierarchical hypergraphs to evolutionary 
design as they can represent an artifact with both multi-argument relations and 
hierarchical dependence which are impossible to express with the use of traditional 
graph structures. 
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Using hypergraphs as a representation in an evolutionary search requires the adaptation 
of traditional evolutionary operators like cross-over and mutation. As the hypergraphs 
selected to be transformed by the evolutionary operators at the subsequent stage of the 
evolution and their structures are not known a priori the  operator must be defined in a 
way which allows for an "online" computation of new hypergraphs. Thus the operator 
has to be specified by an algorithm rather than a set of rules.  

An example of the application of this method is shown and some advantages and 
disadvantages of this approach as well as possible future research directions are briefly 
discussed. The method is illustrated by examples generated by a design system based 
on the proposed method. 

2. Representation 

Hypergraphs (HyGs) are a generalization of traditional graphs. They consist of nodes 
and hyperedges. What makes them different from standard graphs is that hyperedges in 
HyGs can connect an arbitrary number of nodes. The hyperedges are used to represent 
both relations and geometrical objects. 

A hyperedge in a hypergraph may thus represent a geometrical object or a relation 
between a group of objects. These hyperedges are called object hyperedges and 
relational hyperedges, respectively. 

Moreover in a hierarchical hypergraph a hyperedge  may also be used to hide certain 
details of a designed object that are not  needed at a given stage of design or to group 
object having some common features (geometrical or functional). Hyperedges that do 
not represent actual geometric entities or relations but are used to represent a 
hierarchical structure are called hierarchical 

An example of a hierarchical hypergraph and a corresponding floor layout and layout 
design diagram are depicted in fig.1c, 1a and 1b, respectively. The hyperedges depicted 
as rectangles are object hyperedges, while the oval ones represent relational 
hyperedges. Nodes are depicted as small black filled circles. 

Nodes and hyperedges in hypergraphs can be labelled and attributed. Labels are 
assigned to nodes and hyperedges by means of node and hyperedge labelling functions 
respectively, and attributes - by node and hyperedge attributing functions. Attributes 
represent properties (for example size, position, colour or material) of a component 
represented by a given hyperedge. 

A labelled attributed hierarchical hypergraph may represent a potentially infinite number 
of designs having the same structure. To represent an actual design we must determine 
an instance of a hypergraph. An instance of a hypergraph is a labelled attributed  
hierarchical hypergraph. where to each attribute a value of the attribute domain has 
been assigned.  

As such a hypergraph defines only a structure of a design, to create a visualisation of an 
object an interpretation is necessary. The interpretation determines the assignments of 
geometrical objects to object hyperedges, correspondence between relational 



10th Generative Art Conference GA2007 
 

 Page 4

hyperedges and sets of relations between objects (components of a design). The 
geometry of these objects may be internally represented by means of any known 
representation that allows for easy application of similarity transformations. Geometrical 
objects used depend on the domain of application, for example when designing a house 
the set of geometrical objects could contain some primitive objects, or some predefined 
domain-oriented objects like doors, windows, stairs and other parts of a house and a set 
of relations could consist of an adjacency and accessibility relations.  

 

 

Fig. 1 A floor layout, a layout diagram and a corresponding hypergraph 
 

A floor layout shown in fig.1a is the one of many possible designs the hypergraph from 
fig. 1c can represent. The layout was obtained after choosing an instance of this 
hypergraph and then interpreting it. 

2 Evolutionary Design System 

As it has been mentioned, a binary coding of design solutions is very often insufficient. 
This paper proposes to replace this standard coding by a hypergraph representation. To 
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use such a representation in an evolutionary design system a number of elements of this 
system must be defined. 

Firstly a method of initialization must be chosen. One of the possibilities is to generate a 
population of random hypergraphs consisting of nodes and hyperedges from a given set. 
Although this method is easiest to implement in any design system it is usually very slow 
in producing acceptable or feasible designs as many designs are rejected. The other 
possible mechanism is known as a graph grammar and it has been successfully used in 
many domains to generate graphs [17]. Such a grammar describes all syntactically 
correct solutions, for example layouts. 

It also possible to allow the user to generate an initial population of hypergraphs or to 
use hypergraphs generated by another program. Hypergraphs can be also generated 
using operations performed on hypergraphs [5]. 

 

2.1 Evolutionary graph operators 

The genetic operators (usually a crossover and a mutation) constitute the next element 
of an evolutionary algorithm. As in this paper a nonstandard representation is used, new 
genetic operators have to be proposed. 

The hypergraph based equivalent of a standard crossover operator requires establishing 
subgraphs that would be then exchanged. When a crossover is performed on two 
selected hypergraphs, H1 and H2 the subgraphs h1 and h2, respectively, are selected in 
these hypergraphs. Then each subgraph is removed from a hypergraph and inserted 
into the second one. As a result two new hypergraphs are generated. However there 
may exist hyperedges connecting nodes belonging to a chosen subgraph with nodes 
which do not belong to it. Such hyperedges are called embedding of a subgraph. So 
removing a subgraph from a graph and inserting it into another requires a method 
allowing for proper re-connection of these hyperedges. The underlying idea is that all 
hyperedges should be re-connected to nodes similar to those they were connected to in 
the hypergraph from which they were removed. There is probably more than one 
possibility of defining nodes' similarity. 

In this paper a similarity-like relation is used. This relation is called {\it homology}. The 
name was inspired by the gene homology in biology. This relation is responsible for 
establishing subgraphs of selected hypergraphs that are homologous - or similar in 
some way- and thus can be exchanged in the crossover process. The definition of this 
relation is based upon the assumption that both hypergraphs selected for crossover 
code designs consisting of parts having similar or even identical functions (even if these 
parts have a different internal structure, material or/and geometrical properties). 

In other words both hypergraphs are assumed to belong to the same class. The 
homology relation is defined on three levels that differ in terms of requirements put on 
hypergraphs to be in the relation. The weakest of these relations is called context free 
homology and it only requires two subgraphs to have the same number of object 
hyperedges with identical labels. It is the least restrictive of the three relations and it 
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allows for higher variety of new hypergraphs to arise from a crossover but at the same 
time it is able to produce the least meaningful hypergraphs or, in other words, the most 
"disturbed" ones.  

On the opposite side the strongly context dependent homology is defined. It requires the 
top-level hyperedges in both subgraphs to have not only identical labels but also to have 
identically labelled ancestors up to the top-most level of the hypergraph hierarchy. 
Nevertheless  the internal structure of a hyperedge and its attributes are not taken into 
account so even exchanging strongly homologous subgraphs may still produce 
considerably different new hypergraphs. When the context free relation is too weak, i.e., 
it results in too many hypergraphs being unacceptable (rejected by fitness function) and 
the strong homology is too restrictive or results in designs that are very similar or even 
identical to its parents the weakly context dependent homology may be useful. It takes 
into consideration direct ancestors of a given hyperedge but not any ancestors of higher 
levels in the graph hierarchy.  

Formally, a crossover operator cx is defined as a 6-tuple (H1, H2, h1, h2, T, U), where H1, 
H2, h1, h2 are hierarchical hypergraphs and their subgraphs, respectively. The crucial 
elements of this operator are T and U that are called embedding transformations, i.e., 
they describe how hyperedges of the embedding are to be re-connected. They are sets 
of pairs of the form (n, n'), where n denotes a node to which a hyperedge was assigned 
originally and n' - the one to which it will be assigned in a new hypergraph.  

It is important to notice however that the hypergraphs to be crossed over and their 
respective subgraphs are selected during the execution of the evolutionary algorithms so 
the embedding transformations can not be defined a priori (as it is in graph grammars 
[6,17]. Hence probably the most difficult problem is to find a method allowing us to 
establish these transformations. The algorithm generating these transformations 
requires only the subgraphs being exchanged to be homologous. For each level of 
homology a crossover operator is defined, thus we have three crossover operators 
having different levels of context dependence.  
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Fig. 2 A hypergraph H1 representing  a floor layout with selected subhypergraph h1 
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Fig. 3 A hypergraph H2 representing  a floor layout with selected subhypergraph h2 
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Fig. 4 A hypergraph H'1 representing  a floor layout resulting from cross-over operation 
 

The idea behind the algorithm that generates automatically such an embedding 
transformation is to preserve the relations between the object hyperedges as much as 
possible i.e. to connect each hyperedge removed from one graph to a hyperedges in the 
second graphs that represent the same or similar object (i.e has the same label). 

 

acc

adj

accaccaccacc

acc

adj

adj
adj

adj

adj

adj

adj

K

Be

E W

A

H G

Lr

Be

L

S

adj

1

2

2

33

4

1

1

4

4

 

Fig. 5 A hypergraph H'2 representing  a floor layout resulting from cross-over operation 
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Example 
Let us consider a house design system, where structures of floor-layouts are 
represented by hypergraphs. These hypergraphs are determined by a functional graph 
in which all required modules, represented by subgraphs, are defined. In this example 
the required functional modules include: a sleeping area, a living area  and a garage. 
Other functional modules usually used in a house design include a communication area, 
a cooking area and sanitary one. In our example these functionalities are contained in 
other modules.  

Applying a cross over operation we can exchange subgraphs representing the same 
functional areas: for example two living areas or two sleeping areas or just hyperedges 
representing single rooms that may have different internal arrangements. In fig. 2 and 
fig. 3 two hypergraphs, H1 and H2, representing layouts of two apartments (shown in fig. 
6a and 6b, respectively) are depicted. Object hyperedges represent components of the 
apartment, while relational hyperedges, labelled acc and adj, represent accessibility and 
adjacency, respectively. The nodes connected by hyperedges are numbered and they 
denote walls of the rooms. For reasons of clarity in all figures numbers of nodes are 
shown only for nodes participating in crossover operator.  

The subgraphs selected in H1 and H2,denoted h1 and h2, respectively, are surrounded by 
a dashed line. In this example a subgraph h1 consists of a hierarchical hyperedge 
labelled S, representing the sleeping area, and all its descendants (hyperedges and 
nodes assigned to them). In hypergraph H2 a  homologous subgraph h2 was selected, 
that is one with the same label S, marked as the dashed oval in fig. 3.  

The first step of crossover consists in removing selected subgraphs and their respective 
embeddings. The embedding of subgraph h1 in H1 consists of four relational 
hyperedges: a hyperedge labelled acc which connected node 4 of hyperedge labelled 
Be in h1 and node 2 of hyperedge labelled Lv in H1 - h1, and three relational hyperedges 
labelled adj which connect nodes assigned to object hyperedges of h1 with nodes 
assigned to object hyperedges of H1 - h1.  
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Then the subgraph h2 is put into the hypergraph. If an object hyperedge is connected to 
the object hyperedge with the same relation as in the source hypergraph the relation is 
preserved. Otherwise the relation is taken from the destination hypergraph. The 
hypergraphs resulting from crossing over the hypergraph depicted in fig.2 with the 
hypergraph in fig. 3 are shown in fig. 4 and fig. 5. The layouts represented by these 
hypergraphs are depicted in fig. 6c and 6d, respectively.  

2.2 Mutation 

As the second genetic operator mutation is usually used. This operator is much easier to 
be defined for hierarchical hypergraph-based representation.  

The mutation operators may be divided into structure changing mutations and attributes 
changing ones. The second group can be further divided into local and global mutation 
operators.  

The attribute changing operators change values of attributes of a selected object 
hyperedge (local mutation) or all object hyperedges (global mutation). As a result it 
changes geometrical properties of objects assigned to this hyperedge or hyperedges by 
the interpretation. However it is also possible to define mutation operators introducing 
structural changes to an artifact being designed which would not be possible using a 
binary representation. Such mutations could consist in adding or removing hyperedges 
from a hierarchical hypergraph. In the layout design system these mutations may for 
example result in adding or removing rooms.  

So while crossover allows us to generate artifacts being combinations of previously 
existing designs, mutation may introduce wholly new elements into the object being 
designed.  

3. Conclusions 

Applying evolutionary methods to the design domain poses many problems. One of the 
main problems concerns representing designs in such a way that they can be easily 
modified during an evolutionary process. In the proposed approach a hierarchical 
hypergraph is used as a genotype and equivalents of standard genetic operators are 
defined on hypergraphs. Hypergraph-based operators are more complex than standard 
binary ones but we think that the benefits of using a hypergraph representation 
(possibility of coding multiple-argument relationships between components of an artifact 
and ability to introduce structural changes) compensate for it. The strongest point of a 
hypergraph-based representation is its ability to represent in a uniform way all types of 
relations and objects and to produce highly fitted individuals.  

The use of graph grammars makes it possible to generate an initial population of graphs 
representing designs belonging to a desired class. Thus the graph grammar and fitness 
function are the only elements of the evolutionary design system that has to be changed 
in order to design different objects.  

In this paper we evolve hypergraphs representing the structure of the whole design. In 
future we plan to run evolutionary process separately for each functional module. Then 
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the resulting solutions could be combined into one hypergraph structure, which can be 
farther evolved. Such an approach leads to a hierarchical evolutionary algorithm. 
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