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Abstract 

Dice throwing and similar techniques are valuable tools for moving the creative 
process out of a rut or for suggesting previously overlooked directions. Random 
number generators are often used in generative processes to produce variety.   

Yet randomness and complexity have different meanings to different communities. 
Sometimes the term “random” is used to mean “of high complexity”, sometimes “of 
unrecognisable structure”. To discuss “unrecognisable” in a concrete manner we 
must discuss human perception and cognition, subjects which aren’t well understood. 
Meanwhile, highly complex artifacts can emerge from simple rules, adding to the 
confusion. Informal experiential notions of randomness and complexity differ in 
important ways from formal definitions derived from Information Science. These 
approaches are contrasted in an attempt to arrive at a shared model of complexity. 

While randomness can be used as a creative trigger, its use in generative processes 
can impede the progress towards a desired solution. Therefore it is important to 
understand what a random number generator is providing. Since generative 
processes encode considerable structure and complexity into artifacts, we show that 
surprising variety can emerge without the need of random number generators. 
Complexity, surprise and variety are all possible without randomness. 

1. The Role of Surprise 

In many creative disciplines, chance is used to further the creative process. This can 
provide new insight and new solutions may appear. One famous manifestation of this 
is Brian Eno and Peter Schmidt’s Oblique Strategies [1], a deck of cards with cryptic 
remarks which one chooses for inspiration. 

In music, the use of chance can be traced back to the 18th and early 19th century 
Musikalisches Würfelspiel (musical dice game) [2], one example of which is attributed 
to Mozart [3]. In modern dance, Merce Cunningham uses dice throwing just prior to a 
performance to determine the order of the choreography, costumes, lighting, décor, 
and music [4]. The mid-1900’s saw the establishment of aleatoric (or ‘chance’) music, 
defined as “music in which some element of the composition is left to chance or some 
primary element of a composed work's realization is left to the determination of its 
performer(s)” [2].  
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As a technique for unblocking creative potential, the use of randomness is clearly 
valuable. However in aleatoric music, chance is taken one step further and purposely 
removes some decision and control on the part of the composer (e.g. through the 
throwing of dice), although often within a limited number of possibilities. In so doing 
the composer hasn’t simply written one single piece of music, but rather a family of 
music, being all the combinations of the elements combined.  

In modern terms, aleatoric music consists of a process by which a random number is 
used to select combinations from within a predetermined set of elements. It follows 
an algorithm, and is thus an early example of generative art. 

More recently, John Cage used various elaborate approaches to the application of 
chance in composition and performance [5]. His techniques were more sophisticated 
than simply throwing dice. For example in one, the performer must interpret the 
‘musical meaning’ of lines on a sheet of paper. In another he leaves instructions to 
the players on how to turn the volume and tuning knobs on a set of radios (which 
would play whatever happened to be broadcast at that time). We could thus consider 
his algorithms to be more complex. 

2. Approaches to Complexity 

But what do we mean by structure, by complexity? These subjects can be tricky to 
discuss because one often ends up discussing the apparent complexity of an artifact. 
This could be the subtle layering of a piece of music, the sophisticated composition of 
a painting, or the intricate details of a sculpture.   

The problem is that these are all qualitative notions of complexity. Understanding 
them with more precision requires understanding perception and cognition. Our 
senses reduce and encode information prior to processing by our cognitive centers 
[6], so a comprehensive theory on pattern and complexity likely must take those 
encodings into account. Then the cultural context and knowledge of the individual 
must be factored in. Our lack of precision in understanding these areas leads us to 
conundrums like whether Fractals [7] are complex or not. Most would state that they 
are visually complex. Yet Fractals are derived from a very compact algorithm with no 
randomness. They are actually quite simple! Which is correct? 

In math and computer science, there’s a relatively recent definition of complexity.  
Kolmogorov complexity [8] defines the algorithmic information content of a string as 
being the smallest Turing machine1 capable of producing that string. In simple terms, 
it’s the smallest program that can produce that output. 

For example, the following string is quite long, so seems to have lots of information 
content:  “123123123123123123123123123123” 

                     
1 A Turing machine is a simple theoretical computer that reads a tape of symbols which it interprets 
as instructions. Every real software program has an equivalent Turing machine, and every Turing 
machine can be realized as a real program. 
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The clever reader will notice though that this is simply the string “123” repeated 5 
times. Another reader might disagree with that encoding and state instead that its 
“123123” repeated 5 times. Or its “123123123123123” repeated 2 times. Those are 
all true. But which is more true from an information content point of view?  

1. ‘123123123123123123123123123123’  
2. ‘123123123123123’ repeated 2x 
3. ‘123123’ repeated 5x 
4. ’123’ repeated 10x 

Intuitively we see that (4) is the shortest2, and we’re pretty confident that there’s no 
shorter way of expressing it. If I wanted to transmit the string to you, I could send you 
all 30 digits, but it’s faster just to say, “’123’ repeated 10 times”. That’s its information 
content, “’123’ repeated 10 times”. You now know everything there is to know about 
the string.   

Rather than a subjective measure of complexity (“hmm, that looks complicated”), 
Kolmogorov complexity provides an objective, algorithmic measure of complexity 
(“hmm, that turned out to be easy to do”). It provides a theoretical, well constructed, 
quantitative definition of complexity: the information content of an artifact is measured 
by the complexity of the program that produces it3. It’s irrelevant if the thing looks 
complicated, it only matters how hard it is to make it. 

3. What it Means to be Random 

The term “random” gets bantered about quite a bit. It, even more than complexity, 
requires more precision in our use. The mathematical definition is, “being or relating 
to a set or to an element of a set each of whose elements has equal probability of 
occurrence” [9]. Simply, anything could’ve happened, one outcome no more likely 
than the other. This is the classic dice throwing sense of randomness. Sometimes 
though we use it in the sense of “lacking a definite plan, purpose, or pattern” [9]. This 
is a kind of perceived randomness, as in “I couldn’t predict the outcome”.  

Thus we have two approaches to randomness4, one concerning the results, and the 
second concerning the behaviour. 

                     
2 While these aren’t Turing machines, they are like pseudo code programs and for the sake of this 
discussion are sufficiently representative of the complexity of the required Turing machine. 
3 The bad news is that for any arbitrary string, we can’t know if we’ve in fact found the smallest Turing 
machine, there may always be a smaller one we just haven’t been clever enough to come up with. 
Thus the theory is of limited practical benefit but is a powerful conceptual model. 
4 Kolmogorov complexity defines randomness as a string whose smallest Turing machine is, in fact, 
the string itself. That is, there is no algorithm which reveals hidden structure, which compresses it; the 
shortest way to encode the string is to just remember all the digits. 
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4. Random Number Generators aren’t Random 

Ironically, random number generators  aren’t really random at all. They are referred 
to as “pseudo-random”. Their outcome is somewhat random in the probabilistic sense 
above; the digits conform to an acceptable probabilistic distribution.  But their 
behavior certainly isn’t. Given the same seed, they will produce exactly the same 
sequence. 

Thus when you reach for your random number generator, you aren’t actually 
producing anything random, you’re just producing an outcome which is very difficult 
to predict, with no recognizable pattern, whose values are well distributed 
probabilistically. There is in fact a pattern, you just can’t spot it. 

But pseudo random number generators tend to be relatively small programs. Thus 
the outcome is always of relatively low algorithmic information content: small Turing 
machine = low algorithmic information content. Their outcome could be considered 
simple, in fact. 

Random number generators produce simple results. 

5. Random Number Generators Considered Harmful 

As discussed, randomness can be a valuable tool for permitting the artist or designer 
to cede control. However, when faced with set of design criteria, this randomness can 
do more harm than good. This is because without parameterisation and guidance of 
the randomness, results can just as easily move you further from your goal than 
closer to it. This is why approaches such as Genetic Algorithms [10] which use 
randomness to cross breed and for mutation require fitness functions to increase the 
probability of producing superior solutions. The randomness must be controlled. 

Thus its not a matter of simply ceding control, but of ceding the right control, so that 
one can still achieve one’s creative goals. To do so, one must guide the system to 
the desired solution. This task can be difficult once a random number generator has 
been introduced because it reduces predictability, yet predictability is required for us 
to navigate the space of possibilities. If you are unable to drive the system to the 
desired goal, then all you can do is chose from the results, hoping one matches. 
When control is lost, so too is subjectivity, and with it, access to one’s cultural and 
aesthetical references [11]. One’s role is relegated to that of a shopper [12]. 

Therefore it would be better if we could avoid the use of random number generators. 
But can we do so without sacrificing our desire for variety, for complexity, for 
surprise? 
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6. Complexity without Randomness 

Lets us examine a simple L-System5 [13] with the following grammar: 

S=F 
F=F[-F]F[+F]F 

Figure 1 shows the tree expanded to depth 4. 

 

  

Figure 1 - Single rule 

 

A lot of self-similarity and regularity are present. To add a bit of variety, lets add two 
more rules with LHS ‘F’, as shown in the discussion on Stochastic L-Systems in [13]. 

S=F 
F=F[+F]F[-F]F 
F=F[+F] F 
F=F[-F] F 

 

                     
5 L-Systems are rewriting graph grammars capable of producing branching, organic shapes. The 
grammar consists of a set of rules, each with a left hand side, an assignment (in our case, “=”), and a 
right hand side. Starting with the start symbol S, the RHS is expanded as follows: for each symbol, 
find a rule with LHS that matches that symbol and replace the symbol with that rule’s RHS. This 
expansion continues for several recursions. Finally, the resulting string is interpreted, in this case as 
turtle drawing commands (e.g. “F” is “draw a line forward N steps”). 



10th Generative Art Conference GA2007 
 

 Page 6

During expansion only one of these three ‘F’ rules can be applied, therefore we 
require a way of choosing which one to apply at any given time. 

6.1 Random results 

The obvious choice is to use a random number generator, with each rule having 
equal weight of being chosen. Figure 2 shows three randomly generated trees. 

  
Figure 2 -Three random trees 

 

These clearly exhibit more variation than Figure 1. Yet one could claim they are more 
alike than different. This is because the L-System itself, through the recursive 
application of a small set of rules, defines the topology. The random number 
generator just provides varieties. These look like they could be the same plant 
species, just grown under different conditions. 

6.2 Sequential results 

But was a random number generator really required? What if instead one did the 
simplest thing one could think of, which is that every time a rule must be chosen, the 
system just chose the next one in order? That is, first time it picked F=F[+F]F[-F]F, 
next time F=F[+F] F, next F=F[-F] F, then back to the first again. 

This can be represented with the sequence {1, 2, 3}, signifying which rule to pick.  
When the sequence is exhausted, the system starts over at the start (i.e. with ‘1’).  
There are six combinations of sequences of three digits, thus six possible results. 
Figure 3 shows three of them. They exhibit a surprising degree of variety.  
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Figure 3 - The three variations of sequential rule selection 

  

In fact, subjectively its difficult to guess that there was no random number generator 
involved. Yet there is very little information added above the existence of the three 
rules, just the simplest notion of a selection algorithm (i.e. “pick each in turn”). 

6.3 Longer sequence 

More algorithmic information, and thus variety, can be achieved by encoding more 
structure in the sequence. In Figure 4, on the left is the result of the sequence {3, 3, 
2, 2, 1, 1,  2, 2, 3, 3}, and on the right is the author’s phone number. The results are 
rich though it’s not evident that they exhibit any more visual complexity than the 
previous examples. 
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Figure 4 - Longer sequences 

 

6.4 Discussion 

This exercise could continue with more and more sophisticated sequences. A 
legitimate (and fun) area of exploration is the relationship between changes in the 
sequence and changes in the resulting picture. Patterns of digits, reflecting the 
sequence, etc., gradually adds more information to the sequence, which is then 
realized as visual complexity in the picture. Yet even the simplest algorithm for 
choosing the rules results in pictures with surprising variety. This suggests that the 
generative system itself is the primary source of the visual complexity. Similar rich 
results from generative systems that don’t use random number generators have been 
shown in [14,15]. 

While random number generators provide a well distributed set of values, to achieve 
variety, a simple algorithm will do. Random number generators are overkill. Worse, 
they obscure the inherent rich complexity and variety of the generative process. 

Each sequence above can be considered a computable function. There are an 
infinite number of computable functions. Most are not random number generators. 
Thus, there’s a huge space of possible functions waiting to be explored. 

7. Conclusion 

Informal notions of complexity and randomness lead to ambiguity and 
misunderstanding in the generative community. One reason is that subjective 
complexity is experiential. To understand it, one must understand perception and 
cognition. Information theory provides a concise and quantitative definition of 
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complexity in terms of the smallest program capable of producing the result. This 
allows us to think of complexity differently, not solely as a visual experience, but also 
in terms of the sophistication of the process which produced it. 

We’ve shown that a considerable amount of visual complexity can result from the 
simple addition of alternative rules to a generative system. We’ve also shown that  
while random number generators produce well distributed values, visually rich and 
“random looking” results can be achieved through much simpler processes. 

Throwing dice, picking cards from a deck, are valuable techniques for breaking one’s 
thought processes out of a rut. However, the use of random number generators in 
generative processes makes it difficult to guide that process in the desired direction. 
If one’s goal is to produce complexity, then one should look to the process, since it 
contains all the algorithmic information content. If one’s goal is to produce variety, 
than a random number generator is likely unnecessary if the generative process itself 
is sufficiently rich. 

When looking for a function to produce variety, there are infinite available. Rather 
than reaching for the random number generator, pick a different one! 
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